The effect of rock microheterogeneity on steam foam rheology

2020 ◽  
Vol 188 ◽  
pp. 106898 ◽  
Author(s):  
Sean D. Brame ◽  
Biplab Mukherjee ◽  
Pramod Patil ◽  
Amit Katiyar ◽  
Quoc P. Nguyen
Keyword(s):  
Author(s):  
Anuradha Radhakrishnan ◽  
Keith Johnston ◽  
David DiCarlo ◽  
Maša Prodanović

2017 ◽  
Author(s):  
Abdulaziz Al-Qasim ◽  
Fawaz AlOtaibi ◽  
Sunil Kokal ◽  
Xianmin Zhou

Langmuir ◽  
2013 ◽  
Vol 29 (37) ◽  
pp. 11646-11655 ◽  
Author(s):  
Kathrin Engelhardt ◽  
Meike Lexis ◽  
Georgi Gochev ◽  
Christoph Konnerth ◽  
Reinhard Miller ◽  
...  

2021 ◽  
Author(s):  
Javad Iskandarov ◽  
George Fanourgakis ◽  
Waleed Alameri ◽  
George Froudakis ◽  
Georgios Karanikolos

Abstract Conventional foam modelling techniques require tuning of too many parameters and long computational time in order to provide accurate predictions. Therefore, there is a need for alternative methodologies for the efficient and reliable prediction of the foams’ performance. Foams are susceptible to various operational conditions and reservoir parameters. This research aims to apply machine learning (ML) algorithms to experimental data in order to correlate important affecting parameters to foam rheology. In this way, optimum operational conditions for CO2 foam enhanced oil recovery (EOR) can be determined. In order to achieve that, five different ML algorithms were applied to experimental rheology data from various experimental studies. It was concluded that the Gradient Boosting (GB) algorithm could successfully fit the training data and give the most accurate predictions for unknown cases.


Author(s):  
David A. Edwards ◽  
Howard Brenner ◽  
Darsh T. Wasan
Keyword(s):  

2008 ◽  
Vol 18 (6) ◽  
pp. 64250-1-64250-9
Author(s):  
Nick Triantafillopoulos ◽  
Bruce Schreiner ◽  
James Vaughn ◽  
Douglas Bousfield

Abstract This is a study of three-phase foam rheology to qualify penetration in to backing webs during frothed carpet compounds applications. Transient viscosity as a function of shear rate under a short time period is proposed to characterize flow of these compounds in response to a rapidly changing shear field during their application. We developed a fluid dynamic model that predicts the shear and pressure distributions in the compound during its processing in a metering nip based on process parameters and rheological results. We tested frothed compound formulations that are empirically known to be “penetrating” and “non-penetrating” based on the choice of soap (frothing surfactant). Formulated at the same froth density, penetrating to carpet backing compounds had large froth bubbles, relatively low transient shear viscosity and showed increasing foam breakdown due to shear when compared to non-penetrating compounds. Such frothed compounds readily collapse under shear and have relatively low dynamic stability, so the transition from a three-phased (air/aqueous/solid) to a two-phased (water/solid) system occurs much easier and faster during application. The model predicts the shear rate development and a small difference in the pressure distributions in the applicator nip between these formulations, but reduction in drainage for the non-penetrating formulation.


2017 ◽  
Vol 140 (3) ◽  
Author(s):  
Aboozar Soleymanzadeh ◽  
Hamid Reza Erfani Gahrooei ◽  
Vahid Joekar-Niasar

Foam fluids are widely used in petroleum industry such as foam-enhanced hydrocarbon recovery, underbalanced drilling, and as proppant carrying fluid in hydraulic fracturing. The most important issue to be considered in foam behavior is foam rheology and specifically, apparent viscosity. Various models have been used in order to predict foam apparent viscosity; most of these equations are originally developed for suspension systems, containing rigid spherical particles, and therefore, they are unable to predict foam apparent viscosity with acceptable accuracy. In addition, the lack of a comprehensive model with usage in all foam qualities is still tangible in the literature. In this research, a new general empirical model with application in all foam qualities is proposed and validated against experimental data available in the literature. Despite the simplicity, results have near-unity correlation of determination (R2), which shows good agreement of the proposed model with experimental data. Additionally, a new definition for foam quality is presented, to be more representative of the foam texture.


2018 ◽  
Vol 838 ◽  
pp. 222-247 ◽  
Author(s):  
A. Titta ◽  
M. Le Merrer ◽  
F. Detcheverry ◽  
P. D. M. Spelt ◽  
A.-L. Biance

A liquid foam is a dispersion of gas bubbles in a liquid matrix containing surface-active agents. Its flow involves the relative motion of bubbles, which switch neighbours during a so-called topological rearrangement of type 1 (T1). The dynamics of T1 events, as well as foam rheology, have been extensively studied, and experimental results point to the key role played by surfactants in these processes. However, the complex and multiscale nature of the system has so far impeded a complete understanding of the mechanisms involved. In this work, we investigate numerically the effect of surfactants on the rheological response of a 2D sheared bubble cluster. To do so, a level-set method previously employed for simulation of two-phase flow has been extended to include the effects of surfactants. The dynamical processes of the surfactants – diffusion in the liquid and along the interface, adsorption/desorption at the interface – and their coupling with the flow – surfactant advection and Laplace and Marangoni stresses at the interface – are all taken into account explicitly. Through a systematic study of the Biot, capillary and Péclet numbers that characterise the surfactant properties in the simulation, we find that the presence of surfactants can affect the liquid/gas hydrodynamic boundary condition (from a rigid-like situation to a mobile one), which modifies the nature of the flow in the volume from a purely extensional situation to a shear. Furthermore, the work done by surface tension (the 2D analogue of the work by pressure forces), resulting from surfactant and interface dynamics, can be interpreted as an effective dissipation, which reaches a maximum for a Péclet number of order unity. Our results, obtained at high liquid fraction, should provide a reference point, with which experiments and models of T1 dynamics and foam rheology can be compared.


Author(s):  
Denny Vitasari ◽  
Simon Cox ◽  
Paul Grassia ◽  
Ruben Rosario

The viscous froth model for two-dimensional (2D) dissipative foam rheology is combined with Marangoni-driven surfactant redistribution on a foam film. The model is used to study the flow of a 2D foam system consisting of one bubble partially filling a constricted channel and a single spanning film connecting it to the opposite channel wall. Gradients of surface tension arising from film deformation induce tangential flow that redistributes surfactant along the film. This redistribution, and the consequent changes in film tension, inhibit the structure from undergoing a foam-destroying topological change in which the spanning film leaves the bubble behind; foam stability is thereby increased. The system’s behaviour is categorized by a Gibbs–Marangoni parameter, representing the ratio between the rate of motion in tangential and normal directions. Larger values of the Gibbs–Marangoni parameter induce greater variation in surface tension, increase the rate of surfactant redistribution and reduce the likelihood of topological changes. An intermediate regime is, however, identified in which the Gibbs–Marangoni parameter is large enough to create a significant gradient of surface tension but is not great enough to smooth out the flow-induced redistribution of surfactant entirely, resulting in non-monotonic variation in the bubble height, and hence in foam stability.


Sign in / Sign up

Export Citation Format

Share Document