Transient multiphase flow modeling and validation in a real production system with high CO2 content using the drift-flux model

2020 ◽  
Vol 188 ◽  
pp. 106903
Author(s):  
C.G.S. Santim ◽  
L.P. Fulchignoni ◽  
E.S. Rosa ◽  
E.F. Gaspari
Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3930 ◽  
Author(s):  
Fang ◽  
Meng ◽  
Wei ◽  
Xu ◽  
Li

Managed pressure drilling (MPD) is a drilling technique used to address the narrow density window under complex geological environments. It has widespread applications in the exploration and exploitation of oil and gas, both onshore and offshore. In this study, to achieve effective control of the downhole pressure to ensure safety, a gas–liquid two-phase flow model based on the drift flux model is developed to describe the characteristics of transient multiphase flow in the wellbore. The advection upwind splitting method (AUSM) numerical scheme is used to assist with calculation and analysis, and the monotonic upwind scheme for conservation laws (MUSCLs) technique with second-order precision is adopted in combination with the Van Leer slope limiter to improve precision. Relevant data sourced from prior literature are used to validate the suggested model, the results of which reveal an excellent statistical consistency. Further, the influences of various parameters in a field application, including backpressure, density, and mass flow, are analyzed. Over the course of later-stage drilling, a combination of wellhead backpressure and displacement is recommended to exercise control.


SPE Journal ◽  
2006 ◽  
Vol 11 (04) ◽  
pp. 454-463 ◽  
Author(s):  
Hayco Bloemen ◽  
Stefan Belfroid ◽  
Wilco Sturm ◽  
Frederic Verhelst

Summary This paper considers the use of extended Kalman filtering as a soft-sensing technique for gas lift wells. This technique is deployed for the estimation of dynamic variables that are not directly measured. Possible applications are the estimation of flow rates from surface and downhole pressure measurements or the estimation of parameters of a drift-flux model. By means of simulation examples, different configurations of sensor systems are analyzed. Finally, the estimation of drift-flux model parameters is demonstrated on real data from a laboratory setup. Introduction During the last 10 years, the industry has seen different downhole actuation technologies (commonly known as intelligent completions or under different trademarks) coming into existence. The goal of these technologies is ultimately to maximize the value of an asset by applying "right-time" optimization concepts borrowed from control engineering. Depending on the specific economics of the asset, this can be translated into more specific objectives such as speeding up of production, stabilization of unstable production, deferment of production of unwanted fluids, maximizing ultimate recovery, or a combination of some of the aforementioned short- and long-term objectives. Control theory concepts of optimization by means of a feedback loop require means for determining the deviation between the actual response and the desired response of the system. In wells, this often boils down to some sort of multiphase flow measurement. Different accurate multiphase-measurement technologies have been matured during the last decade, and the industry seems to be crossing the chasm between the early-adopter and the early-follower stages. Often for control purposes, direct measurements with high absolute accuracy are not required, as long as the measurements give a good indication of the relative change in the property that needs to be optimized. In different process industries, soft-sensing techniques were developed to determine variables where it is either impossible to directly measure the variables of interest or where it is economically not justifiable. In this paper, the concept of soft sensing is used; unmeasured dynamic variables (such as flow rates) are estimated from measured ones (i.e., pressures) by fitting a sufficiently accurate numerical model to the available measurements. We have looked at the gas lifted well application, where the lift gas rate may be controlled. Ideally this control would be based on directly measured multiphase flow rates, but in reality one often finds that this information is not available. Other measurements, such as surface and downhole pressure and temperature measurements, are more readily available and may be used for soft sensing. The paper is organized in the following manner: first, the model of the gas lifted well is described; then, the soft-sensing concepts are explained; and, finally, different examples and configurations are shown in which this technology is applied for estimating multiphase flows.


2018 ◽  
Vol 184 ◽  
pp. 251-258 ◽  
Author(s):  
Damon E. Turney ◽  
Dinesh V. Kalaga ◽  
Manizheh Ansari ◽  
Roman Yakobov ◽  
J.B. Joshi

2004 ◽  
Vol 126 (4) ◽  
pp. 528-538 ◽  
Author(s):  
S. Kim ◽  
S. S. Paranjape ◽  
M. Ishii ◽  
J. Kelly

The vertical co-current downward air-water two-phase flow was studied under adiabatic condition in round tube test sections of 25.4-mm and 50.8-mm ID. In flow regime identification, a new approach was employed to minimize the subjective judgment. It was found that the flow regimes in the co-current downward flow strongly depend on the channel size. In addition, various local two-phase flow parameters were acquired by the multi-sensor miniaturized conductivity probe in bubbly flow. Furthermore, the area-averaged data acquired by the impedance void meter were analyzed using the drift flux model. Three different distributions parameters were developed for different ranges of non-dimensional superficial velocity, defined by the ration of total superficial velocity to the drift velocity.


Sign in / Sign up

Export Citation Format

Share Document