Hydrogeological control on the accumulation and production of coalbed methane in the Anze Block, southern Qinshui Basin, China

2021 ◽  
Vol 198 ◽  
pp. 108138
Author(s):  
Shida Chen ◽  
Shu Tao ◽  
Wenguang Tian ◽  
Dazhen Tang ◽  
Biao Zhang ◽  
...  
Author(s):  
Hou Jie ◽  
Zou Changchun ◽  
Huang Zhaohui ◽  
Xiao Liang ◽  
Yang Yuqing ◽  
...  

2020 ◽  
Vol 38 (4) ◽  
pp. 1034-1053
Author(s):  
Yang Li ◽  
Shuheng Tang ◽  
Songhang Zhang ◽  
Zhaodong Xi ◽  
Pengfei Wang

To meet the global energy demands, the exploitation of coalbed methane has received increasing attention. Biogeochemical parameters of co-produced water from coalbed methane wells were performed in the No. 3 coal seam in the Shizhuangnan block of the southern Qinshui Basin (China). These biogeochemical parameters were firstly utilized to assess coal reservoir environments and corresponding coalbed methane production. A high level of Na+ and HCO3– and deuterium drift were found to be accompanied by high gas production rates, but these parameters are unreliable to some extent. Dissolved inorganic carbon (DIC) isotopes δ13CDIC from water can be used to distinguish the environmental redox conditions. Positive δ13CDIC values within a reasonable range suggest reductive conditions suitable for methanogen metabolism and were accompanied by high gas production rates. SO42–, NO3– and related isotopes affected by various bacteria corresponding to various redox conditions are considered effective parameters to identify redox states and gas production rates. Importantly, the combination of δ13CDIC and SO42– can be used to evaluate gas production rates and predict potentially beneficial areas. The wells with moderate δ13CDIC and negligible SO42– represent appropriate reductive conditions, as observed in most high and intermediate production wells. Furthermore, the wells with highest δ13CDIC and negligible SO42– exhibit low production rates, as the most reductive environments were too strict to extend pressure drop funnels.


2015 ◽  
Vol 26 (3) ◽  
pp. 391-398 ◽  
Author(s):  
Zheng Zhang ◽  
Yong Qin ◽  
Xuehai Fu ◽  
Zhaobiao Yang ◽  
Chen Guo

2012 ◽  
Vol 616-618 ◽  
pp. 234-239 ◽  
Author(s):  
Jun Qian Li ◽  
Da Meng Liu ◽  
Yan Bin Yao ◽  
Yi Dong Cai ◽  
Xiao Qain Guo ◽  
...  

For finding out favorable coalbed methane development districts, the evaluation of geological controls of CBM distribution and accumulation is essential during CBM exploration and development. In this paper, the No. 3 coal seam in the Zhengzhuang coal zone located at southern Qinshui Basin, China, was selected as a focus for comprehensively evaluating geological controls of CBM. The findings of this study are: (1) Coalbed gas contents increase with increasing mudstone roof thickness (ranging from 0-9 m), and will always be as high as 20 m3/t in the coal reservoirs with the mudstone roof thickness greater than about 9 m. (2) The weak transmission and stagnant coalbed water are favorable for CBM accumulation in coal reservoirs resulting from the typical hydraulic preservation of CBM. (3) High coalbed gas contents will commonly occur in vitrinite-rich and low-ash yield coals with high CH4 adsorptive capacity.


Sign in / Sign up

Export Citation Format

Share Document