3D visualization of tectonic coal microstructure and quantitative characterization on topological connectivity of pore-fracture networks by Micro-CT

Author(s):  
Kaizhong Zhang ◽  
Shilu Wang ◽  
Liang Wang ◽  
Yuanping Cheng ◽  
Wei Li ◽  
...  
2021 ◽  
Author(s):  
Ko-Chin Chen ◽  
Allison Gee ◽  
Geoffrey Croaker

Abstract Background: ETB-/- mutation is a major cause of HSCR, a neurocristopathy known for its enteric nervous system failure. Other than regulating ENCC migration, ETB mediates ET-1 clearance. Consequently, ETB may indirectly affect ET-1/ETA signaling, which controls CNCC migration and craniofacial development. Interestingly, it was hypothesized that “domestication syndrome” arise from changes in neural crest determining genes, including ETA and ETB. While ETA-/- animals are known to suffer severe dysmorphology resembling CATCH22 syndrome, we hypothesize that sl/sl rat, an ETB-/- HSCR model animal, may exhibit subtle craniofacial changes through indirect control. These features may share resemblance to those of domestication syndrome. Methods: Ten rat pups with an average age of 88 hours were anaesthetized with 5% isoflurane and culled via exsanguination. Tail tips were removed for genotyping. Head tissue were stained in 1.5% iodine for two weeks prior to micro-CT scanning. In vivo micro-CT scanning of cranial specimen was performed followed by ex vivo micro-CT scanning of 2 samples for image quality control. 3D visualization and analyses were performed using open-source program, Drishti. Cephalometric measurements were made based on selected craniofacial landmarks. Comparisons were made between sl/sl rats and the control group, which consisted of wild-type and heterozygotes. Results: Subtle reductions in facial measurements were seen in sl/sl rats when compared with the control group, ranging from 1.4% to 15%. These changes were observed in cranial, maxillary and mandibular parameters: total skull length, nasal length, nasal width, nasal cavity width, interorbital width, interlens distance, inner and outer canthal distance, maximal skull height, cranial length, intracranial length and width, interorbital width, and interzygomatic width. Consistently, craniofacial ratio indices showed sl/sl rat has a flatter cranium (skull height/skull length: 0.393 vs 0.413) and a shorter but broader nose (nasal-width/nasal-length: 0.794 vs 0.874). Additionally, subtle dystopia canthorum may be presented in sl/sl rat based on increased W index. While there was no discrepancy in dental number and morphology between the control and sl/sl groups, dimensional difference was detected. Conclusions: This study demonstrated subtle craniofacial changes are presented in ETB-/- HSCR model, supporting the idea that ETB regulates CNCC migration. The findings also implicate HSCR patient may have predisposing risks for conditions such as obstructive sleep apnea, cleft palate, or dental malocclusion. Lastly, these changes share resemblance with described domestication syndrome, supporting NCC-determining gene, ETB, may play a role in the formation of domestication.


2013 ◽  
Vol 671-674 ◽  
pp. 1830-1834
Author(s):  
Yun Tao Ji ◽  
Patrick Baud ◽  
Teng Fong Wong ◽  
Li Qiang Liu

The pore structure in intact and inelastically deformed Indiana limestone have been studied using x-ray microtomography imaging. Guided by detailed microstructural observations and using Multi-level Otsu’s thresholding method, the 3D images acquired at voxel side length of 4 μm were segmented into three domains: solid grains, macropores and an intermediate zone dominated by microporosity. Local Porosity can be defined to infer the porosity of each voxel. The macropores were individually identified by morphological processing and their shape quantified by their sphericity and equivalent diameter. With this segmentation, we obtained statistics on macropores on intact and deformed Indiana limestone which shows that inelastic compaction was followed by a significant reduction in the number of macropores. And also our results revealed the great potentiality to produce a quantitative analysis on porous material with the aid of micro CT images.


2005 ◽  
Author(s):  
Hui Gong ◽  
Qian Liu ◽  
Aijun Zhong ◽  
Shan Ju ◽  
Quan Fang ◽  
...  

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7251 ◽  
Author(s):  
Julio Parapar ◽  
Carlos Caramelo ◽  
María Candás ◽  
Xela Cunha-Veira ◽  
Juan Moreira

Background The overall anatomy of the genus Syllis (Annelida: Syllidae) has been largely studied; however, an integrative approach considering different anatomical techniques has never been considered. Here, we use micro-computed X-ray tomography (micro-CT) to examine the internal anatomy of Syllis gracilis Grube, 1840, along with other widely available techniques. Methods We studied the anatomy of the marine annelid S. gracilis through an integrative approach, including micro-CT along with stereo and light compound microscopy (STM, LCM), scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM) and histological sectioning (HIS). In this manner, we evaluated the applicability of micro-CT for the examination of annelid anatomy by testing whether the images obtained make it possible to visualize the main body structures, in comparison with other current techniques, of the various elements of its internal anatomy. Results Overall external and internal body elements are clearly shown by the integrative use of all techniques, thus overcoming the limitations of each when studied separately.Any given method shows disparate results, depending on the body part considered. For instance, micro-CT provided good images of the external anatomy, including relevant characters such as the shape, length and number of articles of dorsal parapodial cirri. However, it is especially useful for the examination of internal anatomy, thus allowing for 3D visualization of the natural spatial arrangement of the different organs. The features best visualized are those of higher tissue density (i.e., body musculature, anterior parts of the digestive tract), particularly in 3D images of unstained specimens, whereas less electrodense tissues (i.e., the peritoneal lining of septa and nervous system) are less clearly visualized. The use of iodine stain with micro-CT has shown advantages against non-staining for the adequate observation of delicate elements of low density, such as the segmental organs, the connective between the ganglia, the ventral nerve cord and segmental nerves. Discussion Main external anatomical elements of S. gracilis are well shown with micro-CT, but images show lesser optical resolution and contrast when compared to micrographs provided by SEM and CLSM, especially for fine structural features of chaetae. Comparison of micro-CT and HIS images revealed the utility and reliability of the former to show the presence, shape and spatial disposition of most internal body organs; the resolution of micro-CT images at a cellular level is, however, much lower than that of HIS, which makes both techniques complementary.


2018 ◽  
Vol 12 ◽  
Author(s):  
Thomas van den Boogert ◽  
Marc van Hoof ◽  
Stephan Handschuh ◽  
Rudolf Glueckert ◽  
Nils Guinand ◽  
...  

2010 ◽  
Vol 240 (1) ◽  
pp. 32-37 ◽  
Author(s):  
H.M. BRITZ ◽  
J. JOKIHAARA ◽  
O.V. LEPPÄNEN ◽  
T. JÄRVINEN ◽  
D.M.L. COOPER

Author(s):  
Jun KATAGIRI ◽  
Takashi MATSUSHIMA ◽  
Hidetaka SAOMOTO ◽  
Mori UTSUNO ◽  
Yasuo YAMADA

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Ana Ortega-Gil ◽  
Juan José Vaquero ◽  
Mario Gonzalez-Arjona ◽  
Joaquín Rullas ◽  
Arrate Muñoz-Barrutia

AbstractHollow organs such as the lungs pose a considerable challenge for post-mortem imaging in preclinical research owing to their extremely low contrast and high structural complexity. The aim of our study was to enhance the contrast of tuberculosis lesions for their stratification by 3D x-ray–based virtual slicing. Organ samples were taken from five control and five tuberculosis-infected mice. Micro-Computed Tomography (CT) scans of the subjects were acquired in vivo (without contrast agent) and post-mortem (with contrast agent). The proposed contrast-enhancing technique consists of x-ray contrast agent uptake (silver nitrate and iodine) by immersion. To create the histology ground-truth, the CT scan of the paraffin block guided the sectioning towards specific planes of interest. The digitalized histological slides reveal the presence, extent, and appearance of the contrast agents in lung structures and organized aggregates of immune cells. These findings correlate with the contrast-enhanced micro-CT slice. The abnormal densities in the lungs due to tuberculosis disease are concentrated in the right tail of the lung intensity histograms. The increase in the width of the right tail (~376%) indicates a contrast enhancement of the details of the abnormal densities. Postmortem contrast agents enhance the x-ray attenuation in tuberculosis lesions to allow 3D visualization by polychromatic x-ray CT, providing an advantageous tool for virtual slicing of whole lungs. The proposed contrast-enhancing technique combined with computational methods and the diverse micro-CT modalities will open the doors to the stratification of lesion types associated with infectious diseases.


Sign in / Sign up

Export Citation Format

Share Document