scholarly journals Enhancement of a foaming formulation with a zwitterionic surfactant for gas mobility control in harsh reservoir conditions

Author(s):  
Miguel Angel Roncoroni ◽  
Pedro Romero ◽  
Jesús Montes ◽  
Guido Bascialla ◽  
Rosario Rodríguez ◽  
...  
2021 ◽  
Author(s):  
Ying Yu ◽  
Alvinda Sri Hanamertani ◽  
Shehzad Ahmed ◽  
Zunsheng Jiao ◽  
Jonathan Fred McLaughlin ◽  
...  

Abstract Injecting carbon dioxide (CO2) as foam during enhanced oil recovery (EOR) can improve injectate mobility and increase sweep efficiency. Integrating CO2-foam techniques with carbon capture, utilization and storage (CCUS) operations is of recent interest, as the mobility control and sweep efficiency increases seen in EOR could also benefit CO2 storage during CCUS. In this study, a variety of different charge, hydrocarbon chain length, head group surfactants were evaluated by surface tension, bulk and dynamic CO2-foam performance assessments for CCUS. The optimal foam candidate was expected to provide satisfying mobility control effects under reservoir conditions, leading to an improved water displacement efficiency during CO2-foam flooding that favors a more significant CO2 storage potential. All tested surfactants were able to lower their surface tensions against scCO2 by 4-5 times, enlarging the surface area of solution/gas contact; therefore, more CO2 could be trapped in the foam system. A zwitterionic surfactant was found to have slightly higher surface tension against CO2 while exhibiting the highest foaming ability and the most prolonged foam stability with a relatively slower drainage rate among all tested surfactants. The dynamic performance of scCO2-foam stabilized by this zwitterionic surfactant was also evaluated in sandstone and carbonate cores at 13.79 MPa and 90°C. The results show that the mobility control development in carbonate core was relatively slower, suggesting a gradual foam generation process attributed to the higher permeability than the case in sandstone core. A more significant cumulative CO2 storage potential improvement, quantified based on the water production, was recorded in sandstone (53%) over the carbonate (47%). Overall, the selected foam has successfully developed CO2 mobility control and improved water displacement in the occurrence of in-situ foam generation, hence promoting the storage capacity for the injected CO2. This work has optimized the foaming agent selection method at the actual reservoir conditions and evaluated the scCO2-foam performance in establishing high flow resistance and improving the CO2 storage capacity, which benefits integrated CCUS studies or projects utilizing CO2-foam techniques.


2020 ◽  
Vol 10 (8) ◽  
pp. 3961-3969
Author(s):  
Muhammad Khan Memon ◽  
Khaled Abdalla Elraies ◽  
Mohammed Idrees Ali Al-Mossawy

Abstract The use of surfactant is one of the possible solutions to minimize the mobility of gases and improve the sweep efficiency, but the main problem with this process is its stability in the presence of injection water and crude oil under reservoir conditions. In this study, the three types of surfactant anionic, nonionic and amphoteric are examined in the presence of brine salinity at 96 °C and 1400 psia. To access the potential blended surfactant solutions as gas mobility control, laboratory test including aqueous stability, interfacial tension (IFT) and mobility reduction factor (MRF) were performed. The purpose of MRF is to evaluate the blocking effect of selected optimum surfactant solutions. Based on experimental results, no precipitation was observed by testing the surfactant solutions at reservoir temperature of 96 °C. The tested surfactant solutions reduced the IFT between crude oil and brine. The effectiveness and strength of surfactant solutions without crude oil under reservoir conditions were evaluated. A high value of differential pressure demonstrates that the strong foam was generated inside a core that resulted in delay in breakthrough time and reduction in the gas mobility. High mobility reduction factor result was measured by the solution of blended surfactant 0.6%AOS + 0.6%CA406H. Mobility reduction factor of other tested surfactant solutions was found low due to less generated foam by using CO2 under reservoir conditions. The result of these tested surfactant solutions can provide the better understanding of the mechanisms behind generated foam stability and guideline for their implementation as gas mobility control during the process of surfactant alternating gas injection.


2000 ◽  
Vol 3 (01) ◽  
pp. 35-41 ◽  
Author(s):  
M.I. Kuhlman ◽  
H.C. Lau ◽  
A.H. Falls

Summary Laboratory results demonstrate that surfactant adsorption on sandstones is minimized and foam performance improved by reducing the ethoxylate chain length in alcohol ethoxy sulfonates and blending unethoxylated and ethoxylated sulfonates to optimize desirable properties. The results also show that laboratory adsorption measurements can only be extrapolated to reservoirs by (1) replicating the anaerobic conditions of reservoirs, and (2) differentiating authogenic minerals from drilling mud found in reservoir cores. Introduction If a foam is to be designed to provide mobility control throughout reservoirs with a thousand meters between wells, the properties of that foam and the surfactants used to create the foam must differ substantially from foams and surfactants used to reduce mobility in near-wellbore applications. First, it is absolutely necessary to maintain very low surfactant adsorption and limited mobility control in order to use foam in the reservoir, yet the foam must survive when the capillary pressure is high. Surfactants with very high critical micelle concentrations (CMC) used below their CMC appear to satisfy these criteria.1 Surfactants used below their CMC have low adsorption and limited mobility control because solid/fluid and fluid/fluid interfaces are not completely filled with surfactant molecules. Then, surfactant adsorption is so low that low concentrations of surfactant can propagate faster than high concentrations.1–3 Yet foam stability and mobility control are sufficient to limit gravity override of gas.1 Second, oil is likely to spread4 around carbon dioxide-rich gas bubbles when they are some distance from an injector because light hydrocarbons have not yet been stripped from the oil. This can mean that another type of foam, gas/oil, is possible.5 Finally, surfactant must somehow propagate where water is not mobile. A good example of this is at the top of an oil reservoir where water saturation is low, water mobility is low, and surfactant does not propagate far in the water. Some evidence suggests5 that the portion of a surfactant which dissolves in the oil does propagate where water is immobile and can stabilize gas/oil lamellae. This gas/oil foam observed in microvisual experiments at reservoir conditions is known to reduce gas mobility when water is absent,5 and shown with simulations to be the likely cause of mobility control in some laboratory experiments.5 This paper describes optimization of surfactant structure and composition as well as the laboratory controls to properly test surfactant performance. The desirable properties of these surfactants are (a) rapid propagation, (b) limited mobility control, and (c) mixed wettability versus water wetness. Because the surfactant is used below its CMC, micelles do not stop chromatographic separation of surfactant components. Experimental Details Experiments were conducted at 170°F (75°C) with the high salinity brines described in Table 1. The surfactant types and equpment used in this study have been described in previous papers.1,5 The surfactants, Fig. 1, were generally alcohol ethoxy [?CH2?CH2 O?] glyceryl [?CH2?CHOH?CH2] sulfonates (AEGS X-Y) supplied by Shell Chemical Co. X and Y refer to the hydrophobe size or range and ethoxylate (EO) number. Results for alpha olefin sulfonates (AOS X) and their mixtures with AEGS surfactants were also discussed. Unethoxylated alkyl biphenyl disulfonates (DOWFAX) were also used. Three types of surfactant adsorption and propagation experiments were conducted. The first, conducted in Berea cores cleaned with a 3 PV 0.1% sodium dithionite rinse, were used to characterize components which propagated with least adsorption. The second group conducted in similarly cleaned Berea cores or slim tubes packed with disagregated reservoir cores were used to optimize surfactant design. The third group, conducted in tubes packed with reservoir sand, were used to demonstrate that surfactants would propagate under reservoir conditions. Some of these were conducted at anaerobic conditions. A limited number of mobility control experiments in slim tubes packed with 2% illite-sand mixture2,5 were also conducted to demonstrate the effectiveness of the surfactants. Surfactant Characterization. The propagating surfactant was initially characterized with 1H nuclear magnetic resonance (NMR), isotachophoresis, and fast atom bombardment mass spectroscopy (FABS) after effluent from a coreflood had been de-salted using the following procedure: One PV of solution from a coreflood was evaporated to dryness and the residue digested in hot methanol to extract the surfactant. The solution was cooled, filtered, and evaporated to dryness. The residue was dissolved in 50/50 H2O then salted out with Na2 CO3 to produce aqueous and isopropanol layers. Water was added to the isopropanol layer and the salting out procedure repeated a second time. The final isopropanol layer was evaporated to dryness to give a de-salted surfactant-rich residue. 1H NMR was conducted at 360 MHz after the surfactant residue had been dissolved in D2O Isotachophoresis was conducted by injecting the surfactant residue into a capillary column in an electric field. Species of different charge are separated and detected by changes of potential gradient at zone boundaries. In FABS, a sample is bombarded by low-energy-charged atoms, which transfer their charge without breaking up the original molecule. The mass of charged species can be determined to four decimal places and used to confirm the identity of a species. Surfactant Adsorption. Surfactant adsorption was measured by injecting a surfactant solution into Berea cores, or 5/8 in.×12 tubes filled with reservoir sand at Sorw. The brines contained sodium dithionite in most of the experiments. The amount of surfactant adsorbed was determined with a methylene blue dye two-phase extraction technique.6 Mineralogy. The mineralogy of reservoir core material was determined by x-ray diffraction and thin-section point counting. The volumes of foreign mud and fines determined from thin-section analysis was subtracted from the total minerals to determine a more realistic reservoir core description.


2012 ◽  
Vol 30 (10) ◽  
pp. 976-985 ◽  
Author(s):  
A. Gandomkar ◽  
R. Kharrat ◽  
M. Motealleh ◽  
H. H. Khanamiri ◽  
M. Nematzadeh ◽  
...  

SPE Journal ◽  
2016 ◽  
Vol 21 (04) ◽  
pp. 1140-1150 ◽  
Author(s):  
M. A. Fernø ◽  
J.. Gauteplass ◽  
M.. Pancharoen ◽  
A.. Haugen ◽  
A.. Graue ◽  
...  

Summary Foam generation for gas mobility reduction in porous media is a well-known method and frequently used in field applications. Application of foam in fractured reservoirs has hitherto not been widely implemented, mainly because foam generation and transport in fractured systems are not clearly understood. In this laboratory work, we experimentally evaluate foam generation in a network of fractures within fractured carbonate slabs. Foam is consistently generated by snap-off in the rough-walled, calcite fracture network during surfactant-alternating-gas (SAG) injection and coinjection of gas and surfactant solution over a range of gas fractional flows. Boundary conditions are systematically changed including gas fractional flow, total flow rate, and liquid rates. Local sweep efficiency is evaluated through visualization of the propagation front and compared for pure gas injection, SAG injection, and coinjection. Foam as a mobility-control agent resulted in significantly improved areal sweep and delayed gas breakthrough. Gas-mobility reduction factors varied from approximately 200 to more than 1,000, consistent with observations of improved areal sweep. A shear-thinning foam flow behavior was observed in the fracture networks over a range of gas fractional flows.


Author(s):  
Wenli Qiao ◽  
Guicai Zhang ◽  
Jijiang Ge ◽  
Jianda Li ◽  
Ping Jiang ◽  
...  

2020 ◽  
Author(s):  
Leyu Cui ◽  
Géraldine Salabert ◽  
Océane Di-Costanzo ◽  
Christian Dur ◽  
Nicolas Passade-Boupat

2016 ◽  
Vol 7 (1) ◽  
pp. 77-85 ◽  
Author(s):  
Muhammad Khan Memon ◽  
Muhannad Talib Shuker ◽  
Khaled Abdalla Elraies

1999 ◽  
Author(s):  
T. Blaker ◽  
H.K. Celius ◽  
T. Lie ◽  
H.A. Martinsen ◽  
L. Rasmussen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document