scholarly journals Effects of Welding Parameters Onto Keyhole Geometry for Partial Penetration Laser Welding

2013 ◽  
Vol 41 ◽  
pp. 199-208 ◽  
Author(s):  
M. Vänskä ◽  
F. Abt ◽  
R. Weber ◽  
A. Salminen ◽  
T. Graf
2014 ◽  
Vol 794-796 ◽  
pp. 401-406 ◽  
Author(s):  
Pi Zhi Zhao ◽  
Yan Feng Pan ◽  
Jiang Tao ◽  
Xiang Jun Shi ◽  
Qi Zhang

The present study investigated the laser welding performance of Al-Fe aluminum alloy sheets with different contents of intermetallic compounds. Under the same welding parameters, the alloy of higher intermetallic compounds content has wide and deep weld pools with uniform sizes. The alloy of lower intermetallic compounds content has narrow and shallow weld pools with nonuniform sizes. The higher content of intermetallic compounds results in higher laser absorptivity and lower thermal conductivity, and then increases the effective absorbed energy during welding, which is beneficial to the formation of wide and deep weld pools. The distribution uniformity of intermetallic compounds influences the size uniformity of weld pools. In the alloy with lower content of intermetallic compounds, the nonuniform distribution of intermeallic compounds results in the formation of abnormal weld pool, leading to the nonuniform size of the weld pools. In the alloy with higher content of intermetallic compounds, uniform distribution of intermetallic compounds make the size of weld pools more uniform.


2019 ◽  
Vol 111 ◽  
pp. 387-394 ◽  
Author(s):  
Qianqian Guan ◽  
Jiangqi Long ◽  
Ping Yu ◽  
Shunchao Jiang ◽  
Wenhao Huang ◽  
...  

2011 ◽  
Vol 287-290 ◽  
pp. 2401-2406 ◽  
Author(s):  
Ai Qin Duan ◽  
Shui Li Gong

In this paper, the keyhole of YAG laser welding 5A90 Al-Li alloy was observed and measured through the high speed camera. The characteristics of the keyhole and the effects of welding parameters were studied. The characteristics of the absorption of laser energy and the susceptivity for heat input in welding 5A90 were given. The results show that in this welding condition, the keyhole of laser welding 5A90 is nearly a taper and the highest temperature area is in the bottom. There are clear effects of heat input on the characteristics, especially the surface radius of keyhole and plasma/vapor in keyhole. Another phenomena is observed that sometime plasma/vapor could disappear in 0.3ms welding time, and this feature will be more remarkable as decrease of heat input. It shows that the absorption of energy is unsteady. It is known that when this instability reaches a certain value, an unsteady weld will be formed.


2012 ◽  
Vol 445 ◽  
pp. 406-411
Author(s):  
R. Safdarian Korouyeh ◽  
H. Moslemi Naeini ◽  
M.J. Torkamany ◽  
J. Sabaghzadee

2008 ◽  
Vol 35 (2) ◽  
pp. 291-296 ◽  
Author(s):  
王蔚 Wang Wei ◽  
陈俐 Chen Li ◽  
赵兴科 Zhao Xingke ◽  
黄继华 Huang Jihua

2014 ◽  
Vol 41 (6) ◽  
pp. 0603008
Author(s):  
罗燕 Luo Yan ◽  
唐新华 Tang Xinhua ◽  
芦凤桂 Lu Fenggui ◽  
陈钦涛 Chen Qintao ◽  
崔海超 Cui Haichao

Metals ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 102 ◽  
Author(s):  
António Pereira ◽  
Ana Cabrinha ◽  
Fábio Rocha ◽  
Pedro Marques ◽  
Fábio Fernandes ◽  
...  

The welding of dissimilar metals was carried out using a pulsed Nd: YAG laser to join DP1000 steel and an aluminum alloy 1050 H111. Two sheets of each metal, with 30 × 14 × 1 mm3, were lap welded, since butt welding proved to be nearly impossible due to the huge thermal conductivity differences and melting temperature differences of these materials. The aim of this research was to find the optimal laser welding parameters based on the mechanical and microstructure investigations. Thus, the welded samples were then subjected to tensile testing to evaluate the quality of the joining operation. The best set of welding parameters was replicated, and the welding joint obtained using these proper parameters was carefully analyzed using optical and scanning electron microscopes. Despite the predicted difficulties of welding two distinct metals, good quality welded joints were achieved. Additionally, some samples performed satisfactorily well in the mechanical tests, reaching tensile strengths close to the original 1050 aluminum alloy.


Sign in / Sign up

Export Citation Format

Share Document