scholarly journals Correlations of Melt Pool Geometry and Process Parameters During Laser Metal Deposition by Coaxial Process Monitoring

2014 ◽  
Vol 56 ◽  
pp. 228-238 ◽  
Author(s):  
Sörn Ocylok ◽  
Eugen Alexeev ◽  
Stefan Mann ◽  
Andreas Weisheit ◽  
Konrad Wissenbach ◽  
...  
Author(s):  
Lie Tang ◽  
Robert G. Landers

Melt pool temperature is of great importance to deposition quality in laser metal deposition processes. To control the melt pool temperature, an empirical process model describing the relationship between the temperature and process parameters (i.e., laser power, powder flow rate, and traverse speed) is established and verified experimentally. A general tracking controller using the internal model principle is then designed. To examine the controller performance, three sets of experiments tracking both constant and time-varying temperature references are conducted. The results show the melt pool temperature controller performs well in tracking both constant and time-varying temperature references even when process parameters vary significantly. However a multilayer deposition experiment illustrates that maintaining a constant melt pool temperature does not necessarily lead to uniform track morphology, which is an important criteria for deposition quality. The reason is believed to be that different melt pool morphologies may have the same temperature depending on the dynamic balance of heat input and heat loss.


2021 ◽  
Vol 65 ◽  
pp. 42-50
Author(s):  
Angel-Iván García-Moreno ◽  
Juan-Manuel Alvarado-Orozco ◽  
Juansethi Ibarra-Medina ◽  
Enrique Martínez-Franco

2021 ◽  
Vol 52 (3) ◽  
pp. 1106-1116
Author(s):  
Silja-Katharina Rittinghaus ◽  
Jonas Zielinski

AbstractTemperature-time cycles are essential for the formation of microstructures and thus the mechanical properties of materials. In additive manufacturing, components undergo changing temperature regimes because of the track- and layer-wise build-up. Because of the high brittleness of titanium aluminides, preheating is used to prevent cracking. This also effects the thermal history. In the present study, local solidification conditions during the additive manufacturing process of Ti-48Al-2Cr-2Nb with laser metal deposition (LMD) are investigated by both simulation and experimental investigations. Dependencies of the build-up height, preheating temperatures, process parameters and effects on the resulting microstructure are considered, including the heat treatment. Solidification conditions are found to be dependent on the build height and thus actual preheating temperature, process parameters and location in the melt pool. Influences on both chemical composition and microstructure are observed. Resulting differences can almost be balanced through post heat treatment.


Materials ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1388 ◽  
Author(s):  
Jose Ruiz ◽  
Magdalena Cortina ◽  
Jon Arrizubieta ◽  
Aitzol Lamikiz

The use of the Laser Metal Deposition (LMD) technology as a manufacturing and repairing technique in industrial sectors like the die and mold and aerospace is increasing within the last decades. Research carried out in the field of LMD process situates argon as the most usual inert gas, followed by nitrogen. Some leading companies have started to use helium and argon as carrier and shielding gas, respectively. There is therefore a pressing need to know how the use of different gases may affect the LMD process due there being a lack of knowledge with regard to gas mixtures. The aim of the present work is to evaluate the influence of a mixture of argon and helium on the LMD process by analyzing single tracks of deposited material. For this purpose, special attention is paid to the melt pool temperature, as well as to the characterization of the deposited clads. The increment of helium concentration in the gases of the LMD processes based on argon will have three effects. The first one is a slight reduction of the height of the clads. Second, an increase of the temperature of the melt pool. Last, smaller wet angles are obtained for higher helium concentrations.


Applied laser ◽  
2013 ◽  
Vol 33 (3) ◽  
pp. 245-249
Author(s):  
崔宝磊 Cui Baolei ◽  
尚纯 Shang Chun ◽  
杨光 Yang Guang ◽  
卞宏友 Bian Hongyou ◽  
钦兰云 Qin Lanyun ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document