A survey on UAV placement optimization for UAV-assisted communication in 5G and beyond networks

2021 ◽  
pp. 101564
Author(s):  
Israa A. Elnabty ◽  
Yasmine Fahmy ◽  
Mai Kafafy
Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 857
Author(s):  
Jahedul Islam ◽  
Md Shokor A. Rahaman ◽  
Pandian M. Vasant ◽  
Berihun Mamo Negash ◽  
Ahshanul Hoqe ◽  
...  

Well placement optimization is considered a non-convex and highly multimodal optimization problem. In this article, a modified crow search algorithm is proposed to tackle the well placement optimization problem. This article proposes modifications based on local search and niching techniques in the crow search algorithm (CSA). At first, the suggested approach is verified by experimenting with the benchmark functions. For test functions, the results of the proposed approach demonstrated a higher convergence rate and a better solution. Again, the performance of the proposed technique is evaluated with well placement optimization problem and compared with particle swarm optimization (PSO), the Gravitational Search Algorithm (GSA), and the Crow search algorithm (CSA). The outcomes of the study revealed that the niching crow search algorithm is the most efficient and effective compared to the other techniques.


2020 ◽  
pp. 136943322094719
Author(s):  
Xianrong Qin ◽  
Pengming Zhan ◽  
Chuanqiang Yu ◽  
Qing Zhang ◽  
Yuantao Sun

Optimal sensor placement is an important component of a reliability structural health monitoring system for a large-scale complex structure. However, the current research mainly focuses on optimizing sensor placement problem for structures without any initial sensor layout. In some cases, the experienced engineers will first determine the key position of whole structure must place sensors, that is, initial sensor layout. Moreover, current genetic algorithm or partheno-genetic algorithm will change the position of the initial sensor locations in the iterative process, so it is unadaptable for optimal sensor placement problem based on initial sensor layout. In this article, an optimal sensor placement method based on initial sensor layout using improved partheno-genetic algorithm is proposed. First, some improved genetic operations of partheno-genetic algorithm for sensor placement optimization with initial sensor layout are presented, such as segmented swap, reverse and insert operator to avoid the change of initial sensor locations. Then, the objective function for optimal sensor placement problem is presented based on modal assurance criterion, modal energy criterion, and sensor placement cost. At last, the effectiveness and reliability of the proposed method are validated by a numerical example of a quayside container crane. Furthermore, the sensor placement result with the proposed method is better than that with effective independence method without initial sensor layout and the traditional partheno-genetic algorithm.


Sign in / Sign up

Export Citation Format

Share Document