Impact of reduced scale free network on wireless sensor network

2016 ◽  
Vol 463 ◽  
pp. 236-245 ◽  
Author(s):  
Neha Keshri ◽  
Anurag Gupta ◽  
Bimal Kumar Mishra
Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Xiuwen Fu ◽  
Yongsheng Yang ◽  
Haiqing Yao

Previous research of wireless sensor networks (WSNs) invulnerability mainly focuses on the static topology, while ignoring the cascading process of the network caused by the dynamic changes of load. Therefore, given the realistic features of WSNs, in this paper we research the invulnerability of WSNs with respect to cascading failures based on the coupled map lattice (CML). The invulnerability and the cascading process of four types of network topologies (i.e., random network, small-world network, homogenous scale-free network, and heterogeneous scale-free network) under various attack schemes (i.e., random attack, max-degree attack, and max-status attack) are investigated, respectively. The simulation results demonstrate that the rise of interference R and coupling coefficient ε will increase the risks of cascading failures. Cascading threshold values Rc and εc exist, where cascading failures will spread to the entire network when R>Rc or ε>εc. When facing a random attack or max-status attack, the network with higher heterogeneity tends to have a stronger invulnerability towards cascading failures. Conversely, when facing a max-degree attack, the network with higher uniformity tends to have a better performance. Besides that, we have also proved that the spreading speed of cascading failures is inversely proportional to the average path length of the network and the increase of average degree k can improve the network invulnerability.


Complexity ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Ying Duan ◽  
Xiuwen Fu ◽  
Wenfeng Li ◽  
Yu Zhang ◽  
Giancarlo Fortino

Scale-free network and small-world network are the most impacting discoveries in the complex networks theories and have already been successfully proved to be highly effective in improving topology structures of wireless sensor networks. However, currently both theories are not jointly applied to have further improvements in the generation of WSN topologies. Therefore, this paper proposes a cluster-structured evolution model of WSNs considering the characteristics of both networks. With introduction of energy sensitivity and maximum limitation of degrees that a cluster head could have, the performance of our model can be ensured. In order to give an overall assessment of lifting effects of shortcuts, four placement schemes of shortcuts are analyzed. The characteristics of small-world network and scale-free network of our model are proved via theoretical derivation and simulations. Besides, we find that, by introducing shortcuts into scale-free wireless sensor network, the performance of the network can be improved concerning energy-saving and invulnerability, and we discover that the schemes constructing shortcuts between cluster heads and the sink node have better promoted effects than the scheme building shortcuts between pairs of cluster heads, and the schemes based on the preferential principle are superior to the schemes based on the random principle.


Sensors ◽  
2020 ◽  
Vol 20 (4) ◽  
pp. 1114 ◽  
Author(s):  
Ying Zhang ◽  
Guangyuan Yang ◽  
Bin Zhang

When an industrial wireless sensor network (WSN) is seriously disturbed and intentionally attacked, sometimes it fails easily, even leading to the paralysis of the entire industrial wireless network. In order to improve the invulnerability of networks, in this paper, the scale-free network in complex networks is taken as the research object, and the industrial WSN with scale-free characteristics is modeled. Based on the advantages of the fireworks algorithm, such as strong searching ability and diversity of population, a so-called fireworks and particle swarm optimization (FW-PSO) algorithm is proposed, which can improve the global search ability and convergence speed effectively. The proposed FW-PSO algorithm is used to optimize the network topology and form a network with the largest natural connectivity, which can effectively promote the ability of network to resist the cascade failure problem. The dynamic invulnerability of the optimized network under highest-degree (HD) attack and lowest-degree (LD) attack strategies, as well as the static invulnerability under random attack, were evaluated respectively. Simulation experiments show that the industrial WSN optimized by FW-PSO can significantly improve the performance of the dynamic and static invulnerabilities compared with the initial network and the networks optimized by the other two existing algorithms.


Sign in / Sign up

Export Citation Format

Share Document