scholarly journals Evolution of Scale-Free Wireless Sensor Networks with Feature of Small-World Networks

Complexity ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Ying Duan ◽  
Xiuwen Fu ◽  
Wenfeng Li ◽  
Yu Zhang ◽  
Giancarlo Fortino

Scale-free network and small-world network are the most impacting discoveries in the complex networks theories and have already been successfully proved to be highly effective in improving topology structures of wireless sensor networks. However, currently both theories are not jointly applied to have further improvements in the generation of WSN topologies. Therefore, this paper proposes a cluster-structured evolution model of WSNs considering the characteristics of both networks. With introduction of energy sensitivity and maximum limitation of degrees that a cluster head could have, the performance of our model can be ensured. In order to give an overall assessment of lifting effects of shortcuts, four placement schemes of shortcuts are analyzed. The characteristics of small-world network and scale-free network of our model are proved via theoretical derivation and simulations. Besides, we find that, by introducing shortcuts into scale-free wireless sensor network, the performance of the network can be improved concerning energy-saving and invulnerability, and we discover that the schemes constructing shortcuts between cluster heads and the sink node have better promoted effects than the scheme building shortcuts between pairs of cluster heads, and the schemes based on the preferential principle are superior to the schemes based on the random principle.

2011 ◽  
Vol 474-476 ◽  
pp. 828-833
Author(s):  
Wen Jun Xu ◽  
Li Juan Sun ◽  
Jian Guo ◽  
Ru Chuan Wang

In order to reduce the average path length of the wireless sensor networks (WSNs) and save the energy, in this paper, the concept of the small world is introduced into the routing designs of WSNs. So a new small world routing protocol (SWRP) is proposed. By adding a few short cut links, which are confined to a fraction of the network diameter, we construct a small world network. Then the protocol finds paths through recurrent propagations of weak and strong links. The simulation results indicate that SWRP reduces the energy consumption effectively and the average delay of the data transmission, which leads to prolong the lifetime of both the nodes and the network.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Xiuwen Fu ◽  
Yongsheng Yang ◽  
Haiqing Yao

Previous research of wireless sensor networks (WSNs) invulnerability mainly focuses on the static topology, while ignoring the cascading process of the network caused by the dynamic changes of load. Therefore, given the realistic features of WSNs, in this paper we research the invulnerability of WSNs with respect to cascading failures based on the coupled map lattice (CML). The invulnerability and the cascading process of four types of network topologies (i.e., random network, small-world network, homogenous scale-free network, and heterogeneous scale-free network) under various attack schemes (i.e., random attack, max-degree attack, and max-status attack) are investigated, respectively. The simulation results demonstrate that the rise of interference R and coupling coefficient ε will increase the risks of cascading failures. Cascading threshold values Rc and εc exist, where cascading failures will spread to the entire network when R>Rc or ε>εc. When facing a random attack or max-status attack, the network with higher heterogeneity tends to have a stronger invulnerability towards cascading failures. Conversely, when facing a max-degree attack, the network with higher uniformity tends to have a better performance. Besides that, we have also proved that the spreading speed of cascading failures is inversely proportional to the average path length of the network and the increase of average degree k can improve the network invulnerability.


2016 ◽  
Vol E99.B (11) ◽  
pp. 2315-2322
Author(s):  
Nobuyoshi KOMURO ◽  
Sho MOTEGI ◽  
Kosuke SANADA ◽  
Jing MA ◽  
Zhetao LI ◽  
...  

2011 ◽  
Vol 58-60 ◽  
pp. 1013-1017 ◽  
Author(s):  
Fu Fang Li ◽  
Fei Luo ◽  
Jian Xiong Wang ◽  
De Yu Qi ◽  
Guo Wen Xie

Research on nodes localization in Wireless Sensor Networks (WSN) has been a hot spot in recent years. How to improve the reliability and accuracy of nodes localization is a hard and challenging problem in the area, and is far to be solved satisfactorily. This paper proposes an effective self-adapting localization algorithm in WSN based on optimized RSSI and DV-Distance algorithm. In order to enhance the precision of localization, the presented algorithm introduces an effective method to reduce the error of RSSI-measured distance. The algorithm also uses Small-World-Network theory to help select beacon nodes from localized normal nodes, so as to raise the performance and efficiency. Experimental results show that the algorithm has effectively improved the accuracy, self adaptivity, performance and efficiency of nodes localization in WSN.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-13
Author(s):  
Feng Jie Xie ◽  
Jing Shi

The well-known “Bertrand paradox” describes a price competition game in which two competing firms reach an outcome where both charge a price equal to the marginal cost. The fact that the Bertrand paradox often goes against empirical evidences has intrigued many researchers. In this work, we study the game from a new theoretical perspective—an evolutionary game on complex networks. Three classic network models, square lattice, WS small-world network, and BA scale-free network, are used to describe the competitive relations among the firms which are bounded rational. The analysis result shows that full price keeping is one of the evolutionary equilibriums in a well-mixed interaction situation. Detailed experiment results indicate that the price-keeping phenomenon emerges in a square lattice, small-world network and scale-free network much more frequently than in a complete network which represents the well-mixed interaction situation. While the square lattice has little advantage in achieving full price keeping, the small-world network and the scale-free network exhibit a stronger capability in full price keeping than the complete network. This means that a complex competitive relation is a crucial factor for maintaining the price in the real world. Moreover, competition scale, original price, degree of cutting price, and demand sensitivity to price show a significant influence on price evolution on a complex network. The payoff scheme, which describes how each firm’s payoff is calculated in each round game, only influences the price evolution on the scale-free network. These results provide new and important insights for understanding price competition in the real world.


2016 ◽  
Vol 17 (5) ◽  
pp. 308-314 ◽  
Author(s):  
Linan Sun ◽  
Zuhan Liu ◽  
Jiayao Wang ◽  
Lili Wang ◽  
Xuecai Bao ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0251993
Author(s):  
Yan Sun ◽  
Haixing Zhao ◽  
Jing Liang ◽  
Xiujuan Ma

Entropy is an important index for describing the structure, function, and evolution of network. The existing research on entropy is primarily applied to undirected networks. Compared with an undirected network, a directed network involves a special asymmetric transfer. The research on the entropy of directed networks is very significant to effectively quantify the structural information of the whole network. Typical complex network models include nearest-neighbour coupling network, small-world network, scale-free network, and random network. These network models are abstracted as undirected graphs without considering the direction of node connection. For complex networks, modeling through the direction of network nodes is extremely challenging. In this paper, based on these typical models of complex network, a directed network model considering node connection in-direction is proposed, and the eigenvalue entropies of three matrices in the directed network is defined and studied, where the three matrices are adjacency matrix, in-degree Laplacian matrix and in-degree signless Laplacian matrix. The eigenvalue-based entropies of three matrices are calculated in directed nearest-neighbor coupling, directed small world, directed scale-free and directed random networks. Through the simulation experiment on the real directed network, the result shows that the eigenvalue entropy of the real directed network is between the eigenvalue entropy of directed scale-free network and directed small-world network.


Sign in / Sign up

Export Citation Format

Share Document