A cluster-growing dimension of complex networks: From the view of node closeness centrality

2019 ◽  
Vol 522 ◽  
pp. 80-87 ◽  
Author(s):  
Bo Wei ◽  
Yong Deng
Author(s):  
Huan Li ◽  
Richard Peng ◽  
Liren Shan ◽  
Yuhao Yi ◽  
Zhongzhi Zhang

2020 ◽  
Vol 12 (1) ◽  
pp. 5-21
Author(s):  
Péter Marjai ◽  
Attila Kiss

AbstractOne of the most studied aspect of complex graphs is identifying the most influential nodes. There are some local metrics like degree centrality, which is cost-effiective and easy to calculate, although using global metrics like betweenness centrality or closeness centrality can identify influential nodes more accurately, however calculating these values can be costly and each measure has it’s own limitations and disadvantages. There is an ever-growing interest in calculating such metrics in time-varying graphs (TVGs), since modern complex networks can be best modelled with such graphs. In this paper we are investigating the effectiveness of a new centrality measure called efficiency centrality in TVGs. To evaluate the performance of the algorithm Independent Cascade Model is used to simulate infection spreading in four real networks. To simulate the changes in the network we are deleting and adding nodes based on their degree centrality. We are investigating the Time-Constrained Coverage and the magnitude of propagation resulted by the use of the algorithm.


2015 ◽  
Vol 29 (28) ◽  
pp. 1550168 ◽  
Author(s):  
Tingping Zhang ◽  
Bin Fang ◽  
Xinyu Liang

Identifying influential nodes is a basic measure of characterizing the structure and dynamics in complex networks. In this paper, we use network global efficiency by removing edges to propose a new centrality measure for identifying influential nodes in complex networks. Differing from the traditional network global efficiency, the proposed measure is determined by removing edges from networks, not removing nodes. Instead of static structure properties which are exhibited by other traditional centrality measures, such as degree centrality (DC), betweenness centrality (BC) and closeness centrality (CC), we focus on the perspective of dynamical process and global structure in complex networks. Susceptible-infected (SI) model is utilized to evaluate the performance of the proposed method. Experimental results show that the proposed measure is more effective than the other three centrality measures.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Aman Ullah ◽  
Bin Wang ◽  
JinFang Sheng ◽  
Jun Long ◽  
Nasrullah Khan ◽  
...  

AbstractIdentification of Influential nodes in complex networks is challenging due to the largely scaled data and network sizes, and frequently changing behaviors of the current topologies. Various application scenarios like disease transmission and immunization, software virus infection and disinfection, increased product exposure and rumor suppression, etc., are applicable domains in the corresponding networks where identification of influential nodes is crucial. Though a lot of approaches are proposed to address the challenges, most of the relevant research concentrates only on single and limited aspects of the problem. Therefore, we propose Global Structure Model (GSM) for influential nodes identification that considers self-influence as well as emphasizes on global influence of the node in the network. We applied GSM and utilized Susceptible Infected Recovered model to evaluate its efficiency. Moreover, various standard algorithms such as Betweenness Centrality, Profit Leader, H-Index, Closeness Centrality, Hyperlink Induced Topic Search, Improved K-shell Hybrid, Density Centrality, Extended Cluster Coefficient Ranking Measure, and Gravity Index Centrality are employed as baseline benchmarks to evaluate the performance of GSM. Similarly, we used seven real-world and two synthetic multi-typed complex networks along-with different well-known datasets for experiments. Results analysis indicates that GSM outperformed the baseline algorithms in identification of influential node(s).


2015 ◽  
Vol 25 (3) ◽  
pp. 033112 ◽  
Author(s):  
Yuxian Du ◽  
Cai Gao ◽  
Xin Chen ◽  
Yong Hu ◽  
Rehan Sadiq ◽  
...  

Entropy ◽  
2018 ◽  
Vol 20 (4) ◽  
pp. 268 ◽  
Author(s):  
Massimo Stella ◽  
Manlio De Domenico

We introduce distance entropy as a measure of homogeneity in the distribution of path lengths between a given node and its neighbours in a complex network. Distance entropy defines a new centrality measure whose properties are investigated for a variety of synthetic network models. By coupling distance entropy information with closeness centrality, we introduce a network cartography which allows one to reduce the degeneracy of ranking based on closeness alone. We apply this methodology to the empirical multiplex lexical network encoding the linguistic relationships known to English speaking toddlers. We show that the distance entropy cartography better predicts how children learn words compared to closeness centrality. Our results highlight the importance of distance entropy for gaining insights from distance patterns in complex networks.


Influential nodes refer to the ability of a node to spread information in complex networks. Identifying influential nodes is an important problem in complex networks which plays a key role in many applications such as rumor controlling, virus spreading, viral market advertising, research paper views, and citations. Basic measures like degree centrality, betweenness centrality, closeness centrality are identifying influential nodes but they are incapable of largescale networks due to time complexity issues. Chen et al. [1] proposed semi-local centrality, which is reducing computation complexity and finding influential nodes in the network. Recently Yang et al. 2020 [2] proposed a novel centrality measure based on degree and clustering coefficient for identifying the influential nodes. Sanjay et al. 2020 [3] gave voterank and neighborhood coreness-based algorithms for finding the influenced nodes in the network. Zhiwei et al. 2019 [4] considered the average shortest path to discover the influenced node in the network. These are the few recent local,global and mixed centralities. In this paper, we show a broad view of recent methods for finding influential nodes in complex networks. It also analyzes the new challenges and limitations for a better understanding of each method in detail. The experimental results based on these methods show better performance compared with existing basic centrality measures.


2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Zelong Yi ◽  
Xiaokun Wu ◽  
Fan Li

Identifying influential spreaders in complex networks is crucial for containing virus spread, accelerating information diffusion, and promoting new products. In this paper, inspired by the effect of leaders on social ties, we propose the most influential neighbors’ k-shell index that is the weighted sum of the products between k-core values of itself and the node with the maximum k-shell values. We apply the classical Susceptible-Infected-Recovered (SIR) model to verify the performance of our method. The experimental results on both real and artificial networks show that the proposed method can quantify the node influence more accurately than degree centrality, betweenness centrality, closeness centrality, and k-shell decomposition method.


Sign in / Sign up

Export Citation Format

Share Document