global efficiency
Recently Published Documents


TOTAL DOCUMENTS

144
(FIVE YEARS 52)

H-INDEX

14
(FIVE YEARS 4)

2022 ◽  
pp. 000812562110685
Author(s):  
Paul Ryan ◽  
Giulio Buciuni ◽  
Majella Giblin ◽  
Ulf Andersson

The pandemic crisis caused a severe shock to global value chains and led to supply shortages for complex medical goods such as respiratory ventilators. What followed were calls to reshore production for security, and the loss of efficiencies from foreign global value chain (GVC) operations for the multinational enterprise. This article merges internalization and GVC theory to demonstrate a dynamic hierarchy managerial response to these crisis conditions. An optimally configured GVC under hierarchy governance can resiliently eliminate global supply line ruptures yet maintain the benefits of global efficiency.


PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0262310
Author(s):  
Alice Ramirez ◽  
Shabnam Peyvandi ◽  
Stephany Cox ◽  
Dawn Gano ◽  
Duan Xu ◽  
...  

Neonatal brain injury may impact brain development and lead to lifelong functional impairments. Hypoxic-ischemic encephalopathy (HIE) and congenital heart disease (CHD) are two common causes of neonatal brain injury differing in timing and mechanism. Maturation of whole-brain neural networks can be quantified during development using diffusion magnetic resonance imaging (dMRI) in combination with graph theory metrics. DMRI of 35 subjects with CHD and 62 subjects with HIE were compared to understand differences in the effects of HIE and CHD on the development of network topological parameters and functional outcomes. CHD newborns had worse 12–18 month language (P<0.01) and 30 month cognitive (P<0.01), language (P = 0.05), motor outcomes (P = 0.01). Global efficiency, a metric of brain integration, was lower in CHD (P = 0.03) than in HIE, but transitivity, modularity and small-worldness were similar. After controlling for clinical factors known to affect neurodevelopmental outcomes, we observed that global efficiency was highly associated with 30 month motor outcomes (P = 0.02) in both groups. To explore neural correlates of adverse language outcomes in CHD, we used hypothesis-based and data-driven approaches to identify pathways with altered structural connectivity. We found that connectivity strength in the superior longitudinal fasciculus (SLF) tract 2 was inversely associated with expressive language. After false discovery rate correction, a whole connectome edge analysis identified 18 pathways that were hypoconnected in the CHD cohort as compared to HIE. In sum, our study shows that neonatal structural connectivity predicts early motor development after HIE or in subjects with CHD, and regional SLF connectivity is associated with language outcomes. Further research is needed to determine if and how brain networks change over time and whether those changes represent recovery or ongoing dysfunction. This knowledge will directly inform strategies to optimize neurologic functional outcomes after neonatal brain injury.


2021 ◽  
Author(s):  
Juanli Zhang ◽  
Arno Villringer ◽  
Vadim V. Nikulin

Dopaminergic medication for Parkinson's disease (PD) modulates neuronal oscillations and functional connectivity across the basal ganglia-thalamic-cortical circuit. However, the non-oscillatory component of the neuronal activity, potentially indicating a state of excitation/inhibition balance, has not yet been investigated and previous studies have shown inconsistent changes of cortico-cortical connectivity as a response to dopaminergic medication. To further elucidate changes of regional non-oscillatory component of the neuronal power spectra, functional connectivity, and to determine which aspects of network organization obtained with graph theory respond to dopaminergic medication, we analyzed a resting-state EEG (Electroencephalogram) dataset including 15 PD patients during OFF and ON medication conditions. We found that the spectral slope, typically used to quantify the broadband non-oscillatory component of power spectra, steepened particularly in the left central region in the ON compared to OFF condition. In addition, using lagged coherence as a functional connectivity measure, we found that the functional connectivity in the beta frequency range between centro-parietal and frontal regions was enhanced in the ON compared to the OFF condition. After applying graph theory analysis, we observed that at the lower level of topology the node degree was increased, particularly in the centro-parietal area. Yet, results showed no significant difference in global topological organization between the two conditions: either in global efficiency or clustering coefficient for measuring global and local integration, respectively. Interestingly, we found a close association between local/global spectral slope and functional network global efficiency in the OFF condition, suggesting a crucial role of local non-oscillatory dynamics in forming the functional global integration which characterizes PD. These results provide further evidence and a more complete picture for the engagement of multiple cortical regions at various levels in response to dopaminergic medication in PD.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pietro Caliandro ◽  
Gloria Menegaz ◽  
Chiara Iacovelli ◽  
Carmela Conte ◽  
Giuseppe Reale ◽  
...  

AbstractReach&grasp requires highly coordinated activation of different brain areas. We investigated whether reach&grasp kinematics is associated to EEG-based networks changes. We enrolled 10 healthy subjects. We analyzed the reach&grasp kinematics of 15 reach&grasp movements performed with each upper limb. Simultaneously, we obtained a 64-channel EEG, synchronized with the reach&grasp movement time points. We elaborated EEG signals with EEGLAB 12 in order to obtain event related synchronization/desynchronization (ERS/ERD) and lagged linear coherence between Brodmann areas. Finally, we evaluated network topology via sLORETA software, measuring network local and global efficiency (clustering and path length) and the overall balance (small-worldness). We observed a widespread ERD in α and β bands during reach&grasp, especially in the centro-parietal regions of the hemisphere contralateral to the movement. Regarding functional connectivity, we observed an α lagged linear coherence reduction among Brodmann areas contralateral to the arm involved in the reach&grasp movement. Interestingly, left arm movement determined widespread changes of α lagged linear coherence, specifically among right occipital regions, insular cortex and somatosensory cortex, while the right arm movement exerted a restricted contralateral sensory-motor cortex modulation. Finally, no change between rest and movement was found for clustering, path length and small-worldness. Through a synchronized acquisition, we explored the cortical correlates of the reach&grasp movement. Despite EEG perturbations, suggesting that the non-dominant reach&grasp network has a complex architecture probably linked to the necessity of a higher visual control, the pivotal topological measures of network local and global efficiency remained unaffected.


2021 ◽  
Author(s):  
Charbel Zaghrini ◽  
Gabriel Khoury ◽  
Maurice Fadel ◽  
Ragi Ghosn ◽  
Flavia Khatounian

2021 ◽  
Vol 11 (9) ◽  
pp. 1200
Author(s):  
Emanuela Formaggio ◽  
Maria Rubega ◽  
Jessica Rupil ◽  
Angelo Antonini ◽  
Stefano Masiero ◽  
...  

Fast rhythms excess is a hallmark of Parkinson’s Disease (PD). To implement innovative, non-pharmacological, neurostimulation interventions to restore cortical-cortical interactions, we need to understand the neurophysiological mechanisms underlying these phenomena. Here, we investigated effective connectivity on source-level resting-state electroencephalography (EEG) signals in 15 PD participants and 10 healthy controls. First, we fitted multivariate auto-regressive models to the EEG source waveforms. Second, we estimated causal connections using Granger Causality, which provide information on connections’ strength and directionality. Lastly, we sought significant differences connectivity patterns between the two populations characterizing the network graph features—i.e., global efficiency and node strength. Causal brain networks in PD show overall poorer and weaker connections compared to controls quantified as a reduction of global efficiency. Motor areas appear almost isolated, with a strongly impoverished information flow particularly from parietal and occipital cortices. This striking isolation of motor areas may reflect an impaired sensory-motor integration in PD. The identification of defective nodes/edges in PD network may be a biomarker of disease and a potential target for future interventional trials.


Author(s):  
Mengfei Cai ◽  
Mina A Jacob ◽  
David G Norris ◽  
Frank-Erik de Leeuw ◽  
Anil M Tuladhar

Abstract Background To investigate changes in gait performance over time and how these changes are associated with the decline in structural network efficiency and cognition in older patients with cerebral small vessel disease (SVD). Methods In a prospective, single-center cohort with 217 older participants with SVD, we performed 1.5T MRI scans, cognitive tests and gait assessments evaluated by Timed UP and Go (TUG) test twice over 4 years. We reconstructed the white matter network for each subject based on diffusion tensor imaging tractography, followed by graph-theoretical analyses to compute the global efficiency. Conventional MRI markers for SVD, i.e., white matter hyperintensity (WMH) volume, number of lacunes and microbleeds, were assessed. Results Baseline global efficiency was not related to changes in gait performance, while decline in global efficiency over time was significantly associated with gait decline (i.e., increase in TUG time), independent of conventional MRI markers for SVD. Neither baseline cognitive performance nor cognitive decline was associated with gait decline. Conclusions We found that disruption of the white matter structural network was associated with gait decline over time, while the effect of cognitive decline was not. This suggests that structural network disruption has an important role in explaining the pathophysiology of gait decline in older patients with SVD, independent of cognitive decline.


2021 ◽  
Vol 15 ◽  
Author(s):  
Guiyuan Cai ◽  
Manfeng Wu ◽  
Qian Ding ◽  
Tuo Lin ◽  
Wanqi Li ◽  
...  

Transcranial magnetic stimulation (TMS) has a wide range of clinical applications, and there is growing interest in neural oscillations and corticospinal excitability determined by TMS. Previous studies have shown that corticospinal excitability is influenced by fluctuations of brain oscillations in the sensorimotor region, but it is unclear whether brain network activity modulates corticospinal excitability. Here, we addressed this question by recording electroencephalography (EEG) and TMS measurements in 32 healthy individuals. The resting motor threshold (RMT) and active motor threshold (AMT) were determined as markers of corticospinal excitability. The least absolute shrinkage and selection operator (LASSO) was used to identify significant EEG metrics and then correlation analysis was performed. The analysis revealed that alpha2 power in the sensorimotor region was inversely correlated with RMT and AMT. Innovatively, graph theory was used to construct a brain network, and the relationship between the brain network and corticospinal excitability was explored. It was found that the global efficiency in the theta band was positively correlated with RMT. Additionally, the global efficiency in the alpha2 band was negatively correlated with RMT and AMT. These findings indicated that corticospinal excitability can be modulated by the power spectrum in sensorimotor regions and the global efficiency of functional networks. EEG network analysis can provide a useful supplement for studying the association between EEG oscillations and corticospinal excitability.


Sign in / Sign up

Export Citation Format

Share Document