scholarly journals Two proposals to protect a qubit using CQED techniques: Inequality between atomic velocity dispersion and losses of a quantum memory

Author(s):  
J. Lira ◽  
J.G.G. de Oliveira ◽  
J.G. Peixoto de Faria ◽  
M.C. Nemes
1967 ◽  
Vol 31 ◽  
pp. 265-278 ◽  
Author(s):  
A. Blaauw ◽  
I. Fejes ◽  
C. R. Tolbert ◽  
A. N. M. Hulsbosch ◽  
E. Raimond

Earlier investigations have shown that there is a preponderance of negative velocities in the hydrogen gas at high latitudes, and that in certain areas very little low-velocity gas occurs. In the region 100° <l< 250°, + 40° <b< + 85°, there appears to be a disturbance, with velocities between - 30 and - 80 km/sec. This ‘streaming’ involves about 3000 (r/100)2solar masses (rin pc). In the same region there is a low surface density at low velocities (|V| < 30 km/sec). About 40% of the gas in the disturbance is in the form of separate concentrations superimposed on a relatively smooth background. The number of these concentrations as a function of velocity remains constant from - 30 to - 60 km/sec but drops rapidly at higher negative velocities. The velocity dispersion in the concentrations varies little about 6·2 km/sec. Concentrations at positive velocities are much less abundant.


1967 ◽  
Vol 31 ◽  
pp. 45-46
Author(s):  
Carl Heiles

High-resolution 21-cm line observations in a region aroundlII= 120°,b11= +15°, have revealed four types of structure in the interstellar hydrogen: a smooth background, large sheets of density 2 atoms cm-3, clouds occurring mostly in groups, and ‘Cloudlets’ of a few solar masses and a few parsecs in size; the velocity dispersion in the Cloudlets is only 1 km/sec. Strong temperature variations in the gas are in evidence.


1983 ◽  
Vol 100 ◽  
pp. 391-399 ◽  
Author(s):  
S. Michael Fall

Before theoretical ideas in this subject can be compared with observational data, it is necessary to consider the properties of galaxies that are likely to be relics of their formation. Most astronomers would agree that the list of important parameters should be headed by the total mass M, energy E and angular momentum J. Next on the list should probably be the relative contributions to these quantities from the disc and bulge components of galaxies and denoted D/B for the mass ratio. They can be estimated from the median (i.e. half-mass) radius R, velocity dispersion σ and rotation velocity v of each component, either through the virial theorem or through the luminosity L and an assumed value of M/L. As a first approximation, it is reasonable to suppose that galaxies of a given disc-to-bulge ratio or morphological type form a sequence with mass as the fundamental parameter. The comparison of theory with data is further simplified by considering the extreme cases of ellipticals, with D/B << 1, and late-type spirals, with D/B >> 1. The approach outlined below is to explore the consequences of relaxing in succession the constraints that E, J and M be conserved during the collapse of proto-galaxies. In this article I concentrate on theories that are based on some form of hierarchical clustering because the pancake and related theories are not yet refined enough for a detailed confrontation with observations.


2020 ◽  
Vol 15 (S359) ◽  
pp. 62-66
Author(s):  
Carlo Cannarozzo ◽  
Carlo Nipoti ◽  
Alessandro Sonnenfeld ◽  
Alexie Leauthaud ◽  
Song Huang ◽  
...  

AbstractThe evolution of the structural and kinematic properties of early-type galaxies (ETGs), their scaling relations, as well as their stellar metallicity and age contain precious information on the assembly history of these systems. We present results on the evolution of the stellar mass-velocity dispersion relation of ETGs, focusing in particular on the effects of some selection criteria used to define ETGs. We also try to shed light on the role that in-situ and ex-situ stellar populations have in massive ETGs, providing a possible explanation of the observed metallicity distributions.


1988 ◽  
Vol 126 ◽  
pp. 663-664
Author(s):  
G. Meylan

The southern sky gives us the great opportunity to observe two among the brightest and nearest globular clusters of the Galaxy: ω Cen and 47 Tuc. For these giant clusters, we present the comparison between observations and King-Michie multi-mass dynamical models with anisotropy in the velocity dispersion. A more comprehensive description of this work is to be published (Meylan 1986a,b).


2020 ◽  
Vol 102 (4) ◽  
Author(s):  
A. S. Losev ◽  
T. Yu. Golubeva ◽  
A. D. Manukhova ◽  
Yu. M. Golubev

Sign in / Sign up

Export Citation Format

Share Document