Hydrogenic impurity bound polaron in a parabolic quantum dot with arbitrary electron–phonon coupling strength

2011 ◽  
Vol 406 (10) ◽  
pp. 2033-2037 ◽  
Author(s):  
Shi-Hua Chen
2012 ◽  
Vol 11 (03) ◽  
pp. 1250026 ◽  
Author(s):  
CHENG-SHUN WANG ◽  
YU-FANG CHEN ◽  
JING-JIN XIAO

Properties of the excited state of strong-coupling impurity bound polaron in an asymmetric quantum dot are studied by using linear combination operator and unitary transformation methods. The first internal excited state energy, the excitation energy and the transition frequency between the first internal excited and the ground states of the impurity bound polaron as functions of the transverse and the longitudinal effective confinement lengths of the dot, the electron–phonon coupling strength and the Coulomb bound potential were derived. Our numerical results show that they will increase with decreasing the effective confinement lengths, due to interesting quantum size confining effects. But they are an increasing functions of the Coulomb bound potential. The first internal excited state energy is a decreasing function of the electron–phonon coupling strength whereas the transition frequency and the excitation energy are an increasing one of the electron–phonon coupling strength.


2009 ◽  
Vol 23 (20n21) ◽  
pp. 2449-2456 ◽  
Author(s):  
WEI XIAO ◽  
JING-LIN XIAO

We study the vibrational frequency and the interaction energy of the weak-coupling impurity bound magnetopolaron in an anisotropic quantum dot. The effects of the transverse and longitudinal effective confinement lengths, the electron–phonon coupling strength, the cyclotron frequency of a magnetic field and the Coulomb bound potential are taken into consideration by using an improved linear combination operator method. It is found that the vibrational frequency and the interaction energy will increase rapidly with decreasing confinement lengths and increasing the cyclotron frequency. The vibrational frequency is an increasing function of the Coulomb bound potential, whereas the interaction energy is an decreasing one of the potential and the electron–phonon coupling strength.


2007 ◽  
Vol 21 (12) ◽  
pp. 2007-2016 ◽  
Author(s):  
WEI XIAO ◽  
JING-LIN XIAO

The properties of the strong-coupling magnetopolaron in a parabolic quantum dot are studied for the first time using an improved linear combination operator method. The relation between the vibration frequency, the interaction energy and the effective mass of the strong-coupling magnetopolaron in a parabolic quantum dot with the magnetic field, the confinement strength and the electron-phonon coupling strength were derived. Numerical calculations for the RbCl crystal, for example, are performed and the results show that the vibration frequency, the effective mass and the interaction energy of the strong-coupling magnetopolaron in a parabolic quantum dot will increase quickly with decreasing effective confinement length of the quantum dot. Those attributed to interesting quantum size effects will appear.


2019 ◽  
Vol 33 (32) ◽  
pp. 1950386
Author(s):  
Shi-Hua Chen

The first-excited-state (ES) binding energy of hydrogenic impurity bound polaron in an anisotropic quantum dot (QD) is obtained by constructing a variational wavefunction under the action of a uniform external electric field. As for a comparison, the ground-state (GS) binding energy of the system is also included. We apply numerical calculations to KBr QD with stronger electron–phonon (E–P) interaction in which the new variational wavefunction is adopted. We analyzed specifically the effects of electric field and the effects of both the position of the impurity and confinement lengths in the xy-plane and the [Formula: see text] direction on the ground and the first-ES binding energies (BEs). The results show that the selected trial wavefunction in the ES is appropriate and effective for the current research system.


Sign in / Sign up

Export Citation Format

Share Document