Active superconducting DC fault current limiter based on flux compensation

2006 ◽  
Vol 442 (2) ◽  
pp. 108-112 ◽  
Author(s):  
Jing Shi ◽  
Yuejin Tang ◽  
Chen Wang ◽  
Yusheng Zhou ◽  
Jingdong Li ◽  
...  
Energies ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 4210
Author(s):  
Kang-Cheol Cho ◽  
Min-Ki Park ◽  
Sung-Hun Lim

Recently, a lot of interesting research has been conducted to solve the fault current problem of the DC system. In long-distance transmission, DC transmission is more economical than AC transmission. The connection of power grids with a DC system can also better control the power flow and provide high stability. However, the control of the fault current in a DC system is more difficult to handle than in an AC system because the DC system does not make a zero point, unlike the AC system. In addition, there is a disadvantage, in that an arc occurs when a circuit breaker operates. In this paper, a new type of DC superconducting fault current limiter (SFCL) is proposed. This new type of SFCL is composed of two superconducting elements, a current limiting resistor/reactor (CLR), and a transformer. With the proposed SFCL, the DC fault current limiting experiments were performed and the DC fault current limiting characteristics of this SFCL due to the component of the CLR were analyzed.


Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1837 ◽  
Author(s):  
Ho-Yun Lee ◽  
Mansoor Asif ◽  
Kyu-Hoon Park ◽  
Hyun-Min Mun ◽  
Bang-Wook Lee

The half bridge (HB) modular multilevel converter (MMC) technology is considered a breakthrough to mitigate the shortcomings of the conventional voltage source converter (VSC) in high-voltage direct-current (HVDC) grid application. However, interruption of the DC fault is still a challenge due to fast di/dt and extremely high levels of DC fault current. The fault interruption using a DC circuit breaker (DCCB) causes enormous energy dissipation and voltage stress across the DCCB. Therefore, the use of a fault current limiter is essential, and the superconducting fault current limiter (SFCL) is the most promising choice. Past literature has focused on the operating characteristics of DCCB or limiting characteristics of the SFCL. However, there is little understanding about the fault interruption and system recovery characteristics considering both DCCB and SFCL. In this paper, we have presented a comparative study on fault interruption and system recovery characteristics considering three types of fault limiting devices in combination with circuit breaker. The transient analyses of AC and DC system have been performed, to suggest the most preferable protection scheme. It has been concluded that, amongst the three fault limiting devices, the Hybrid SFCL in combination with circuit breaker, delivers the most desirable performance in terms of interruption time, recovery time, energy dissipation and voltage transients.


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1753 ◽  
Author(s):  
Bing Han ◽  
Yonggang Li

The low voltage direct current (LVDC) distribution networks are connected with too many kinds of loads and sources, which makes them prone to failure. Due to the small damping value in the DC lines, the fault signal propagates so fast that the impact current with the wave front of millisecond and the transient voltage pose great challenges for fault detection. Even worse, some faults with small currents are difficult to detect and the communication is out of sync, resulting in protection misoperation. These problems have severely affected the new energy utilization. In view of this, a DC fault current limiter (FCL) composed of inductance, resistance, and power electronic switch was designed in this paper. The rising speed of fault current can be decreased by the series inductance and the peak value of the fault current can be limited by series impedance, thus in this way the running time can be gained for fault detection and protection. For distributed energy access, by deducing the short circuit fault characteristic expression of LVDC distribution network, the feasibility of FCL was verified. Based on the structure of the bridge-type alternating current (AC) current limiter, the structure and parameters of the DC FCL were determined according to the fault ride-through target. Then, a low voltage ride-through strategy based on DC FCL was proposed for the bipolar short-circuit fault of LVDC distribution network. Finally, MATLAB/Simulink simulation was used to verify the rationality of the proposed FCL and its ride-through strategy.


Sign in / Sign up

Export Citation Format

Share Document