scholarly journals Final states of decaying 2D turbulence in bounded domains: Influence of the geometry

2008 ◽  
Vol 237 (14-17) ◽  
pp. 2228-2233 ◽  
Author(s):  
Kai Schneider ◽  
Marie Farge
2009 ◽  
Vol 62 (2) ◽  
Author(s):  
H. J. H. Clercx ◽  
G. J. F. van Heijst

In this review we will discuss recent experimental and numerical results of quasi-two-dimensional decaying and forced Navier–Stokes turbulence in bounded domains. We will give a concise overview of developments in two-dimensional turbulence research, with emphasis on the progress made during the past 10 years. The scope of this review concerns the self-organization of two-dimensional Navier–Stokes turbulence, the quasi-stationary final states in domains with no-slip boundaries, the role of the lateral no-slip walls on two-dimensional turbulence, and their role on the possible destabilization of domain-sized vortices. The overview of the laboratory experiments on quasi-two-dimensional turbulence is restricted to include only those carried out in thin electromagnetically forced shallow fluid layers and in stratified fluids. The effects of the quasi-two-dimensional character of the turbulence in the laboratory experiments will be discussed briefly. As a supplement, the main results from numerical simulations of forced and decaying two-dimensional turbulence in rectangular and circular domains, thus explicitly taking into account the lateral sidewalls, will be summarized and compared with the experimental observations.


Author(s):  
John Campbell ◽  
Joey Huston ◽  
Frank Krauss

At the core of any theoretical description of hadron collider physics is a fixed-order perturbative treatment of a hard scattering process. This chapter is devoted to a survey of fixed-order predictions for a wide range of Standard Model processes. These range from high cross-section processes such as jet production to much more elusive reactions, such as the production of Higgs bosons. Process by process, these sections illustrate how the techniques developed in Chapter 3 are applied to more complex final states and provide a summary of the fixed-order state-of-the-art. In each case, key theoretical predictions and ideas are identified that will be the subject of a detailed comparison with data in Chapters 8 and 9.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
G. Aad ◽  
◽  
B. Abbott ◽  
D. C. Abbott ◽  
A. Abed Abud ◽  
...  

Abstract The results of a search for new phenomena in final states with b-jets and missing transverse momentum using 139 fb−1 of proton-proton data collected at a centre-of-mass energy $$ \sqrt{s} $$ s = 13 TeV by the ATLAS detector at the LHC are reported. The analysis targets final states produced by the decay of a pair-produced supersymmetric bottom squark into a bottom quark and a stable neutralino. The analysis also seeks evidence for models of pair production of dark matter particles produced through the decay of a generic scalar or pseudoscalar mediator state in association with a pair of bottom quarks, and models of pair production of scalar third-generation down-type leptoquarks. No significant excess of events over the Standard Model background expectation is observed in any of the signal regions considered by the analysis. Bottom squark masses below 1270 GeV are excluded at 95% confidence level if the neutralino is massless. In the case of nearly mass-degenerate bottom squarks and neutralinos, the use of dedicated secondary-vertex identification techniques permits the exclusion of bottom squarks with masses up to 660 GeV for mass splittings between the squark and the neutralino of 10 GeV. These limits extend substantially beyond the regions of parameter space excluded by similar ATLAS searches performed previously.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Sourav Dey ◽  
Claudio O. Dib ◽  
Juan Carlos Helo ◽  
Minakshi Nayak ◽  
Nicolás A. Neill ◽  
...  

Abstract We consider light neutralinos of mass about 1 GeV, produced from τ lepton rare decays at Belle II, in the context of R-parity-violating (RPV) supersymmetry. With large and clean samples of τ leptons produced at the Belle II experiment, excellent sensitivity to such light neutralinos with the exotic signatures of displaced vertices is expected. We focus on two benchmark scenarios of single RPV operators, $$ {\lambda}_{311}^{\prime }{L}_3{Q}_1{\overline{D}}_1 $$ λ 311 ′ L 3 Q 1 D ¯ 1 and $$ {\lambda}_{312}^{\prime }{L}_3{Q}_1{\overline{D}}_2 $$ λ 312 ′ L 3 Q 1 D ¯ 2 , which induce both the production and decay of the lightest neutralino. For the reconstruction of a displaced vertex, we require at least two charged pions in the final states. We perform Monte-Carlo simulations for both signal and background events, and find that Belle II can explore regions in the parameter space competitive with other probes. In particular, for the $$ {\lambda}_{311}^{\prime } $$ λ 311 ′ scenario, it can put limits up to two orders of magnitude stronger than the current bounds.


Sign in / Sign up

Export Citation Format

Share Document