scholarly journals Energy and potential enstrophy flux constraints in quasi-geostrophic models

2014 ◽  
Vol 284 ◽  
pp. 27-41 ◽  
Author(s):  
Eleftherios Gkioulekas
Keyword(s):  
2009 ◽  
Vol 66 (7) ◽  
pp. 2073-2084 ◽  
Author(s):  
Peter Névir ◽  
Matthias Sommer

Abstract Nambu field theory, originated by Névir and Blender for incompressible flows, is generalized to establish a unified energy–vorticity theory of ideal fluid mechanics. Using this approach, the degeneracy of the corresponding noncanonical Poisson bracket—a characteristic property of Hamiltonian fluid mechanics—can be replaced by a nondegenerate bracket. An energy–vorticity representation of the quasigeostrophic theory and of multilayer shallow-water models is given, highlighting the fact that potential enstrophy is just as important as energy. The energy–vorticity representation of the hydrostatic adiabatic system on isentropic surfaces can be written in complete analogy to the shallow-water equations using vorticity, divergence, and pseudodensity as prognostic variables. Furthermore, it is shown that the Eulerian equation of motion, the continuity equation, and the first law of thermodynamics, which describe the nonlinear evolution of a 3D compressible, adiabatic, and nonhydrostatic fluid, can be written in Nambu representation. Here, trilinear energy–helicity, energy–mass, and energy–entropy brackets are introduced. In this model the global conservation of Ertel’s potential enstrophy can be interpreted as a super-Casimir functional in phase space. In conclusion, it is argued that on the basis of the energy–vorticity theory of ideal fluid mechanics, new numerical schemes can be constructed, which might be of importance for modeling coherent structures in long-term integrations and climate simulations.


2013 ◽  
Vol 722 ◽  
Author(s):  
Michael L. Waite

AbstractDirect numerical simulations are used to investigate potential enstrophy in stratified turbulence with small Froude numbers, large Reynolds numbers, and buoyancy Reynolds numbers ($R{e}_{b} $) both smaller and larger than unity. We investigate the conditions under which the potential enstrophy, which is a quartic quantity in the flow variables, can be approximated by its quadratic terms, as is often done in geophysical fluid dynamics. We show that at large scales, the quadratic fraction of the potential enstrophy is determined by $R{e}_{b} $. The quadratic part dominates for small $R{e}_{b} $, i.e. in the viscously coupled regime of stratified turbulence, but not when $R{e}_{b} \gtrsim 1$. The breakdown of the quadratic approximation is consistent with the development of Kelvin–Helmholtz instabilities, which are frequently observed to grow on the layerwise structure of stratified turbulence when $R{e}_{b} $ is not too small.


Author(s):  
V. O. Ivchenko ◽  
V. B. Zalesny

The problem of parametrization of the eddy fluxes of a potential vorticity is discussed. Traditional diffusion parameterization is complemented by the inclusion of a rotational component. For the analysis of the new scheme, a quasi-geostrophic model of the dynamics of the barotropic flow in a zonal channel with a non-uniform bottom is used. An analytical solution of the problem is found and the influence of topography on the flow disturbances is discussed. It is shown that the equation for the eddy potential enstrophy allows to relate diffusion and «rotational» coefficients.


1997 ◽  
Vol 341 ◽  
pp. 1-18 ◽  
Author(s):  
WILLIAM J. MERRYFIELD ◽  
GREG HOLLOWAY

The physical basis for parameterizing topographic stress due to unresolved eddies is examined in a quasi-geostrophic barotropic model. Topographic stress parameterization is shown to represent two effects of eddies: attraction of the flow to a statistical equilibrium featuring topographically correlated mean currents, and dissipation of potential enstrophy. Performance is evaluated by comparing parameterized low-resolution models with explicit high-resolution models.


2017 ◽  
Vol 145 (3) ◽  
pp. 751-772 ◽  
Author(s):  
Michael D. Toy ◽  
Ramachandran D. Nair

An energy and potential enstrophy conserving finite-difference scheme for the shallow-water equations is derived in generalized curvilinear coordinates. This is an extension of a scheme formulated by Arakawa and Lamb for orthogonal coordinate systems. The starting point for the present scheme is the shallow-water equations cast in generalized curvilinear coordinates, and tensor analysis is used to derive the invariant conservation properties. Preliminary tests on a flat plane with doubly periodic boundary conditions are presented. The scheme is shown to possess similar order-of-convergence error characteristics using a nonorthogonal coordinate compared to Cartesian coordinates for a nonlinear test of flow over an isolated mountain. A linear normal mode analysis shows that the discrete form of the Coriolis term provides stationary geostrophically balanced modes for the nonorthogonal coordinate and no unphysical computational modes are introduced. The scheme uses centered differences and averages, which are formally second-order accurate. An empirical test with a steady geostrophically balanced flow shows that the convergence rate of the truncation errors of the discrete operators is second order. The next step will be to adapt the scheme for use on the cubed sphere, which will involve modification at the lateral boundaries of the cube faces.


2012 ◽  
Vol 140 (10) ◽  
pp. 3220-3234 ◽  
Author(s):  
Hilary Weller

Abstract The arbitrarily structured C grid, Thuburn–Ringler–Skamarock–Klemp (TRiSK), is being used in the Model for Prediction Across Scales (MPAS) and is being considered by the Met Office for their next dynamical core. However, the hexagonal C grid supports a branch of spurious Rossby modes, which lead to erroneous grid-scale oscillations of potential vorticity (PV). It is shown how these modes can be harmlessly controlled by using upwind-biased interpolation schemes for PV. A number of existing advection schemes for PV are tested, including that used in MPAS, and none are found to give adequate results for all grids and all cases. Therefore a new scheme is proposed; continuous, linear-upwind stabilized transport (CLUST), a blend between centered and linear-upwind with the blend dependent on the flow direction with respect to the cell edge. A diagnostic of grid-scale oscillations is proposed that gives further discrimination between schemes than using potential enstrophy alone. Indeed, some schemes are found to destroy potential enstrophy while grid-scale oscillations grow. CLUST performs well on hexagonal-icosahedral grids and unrotated skipped latitude–longitude grids of the sphere for various shallow-water test cases. Despite the computational modes, the hexagonal icosahedral grid performs well since these modes are easy and harmless to filter. As a result, TRiSK appears to perform better than a spectral shallow-water model.


2012 ◽  
Vol 694 ◽  
pp. 493-523 ◽  
Author(s):  
Eleftherios Gkioulekas

AbstractIn the Nastrom–Gage spectrum of atmospheric turbulence, we observe a${k}^{\ensuremath{-} 3} $energy spectrum that transitions into a${k}^{\ensuremath{-} 5/ 3} $spectrum, with increasing wavenumber$k$. The transition occurs near a transition wavenumber${k}_{t} $, located near the Rossby deformation wavenumber${k}_{R} $. The Tung–Orlando theory interprets this spectrum as a double downscale cascade of potential enstrophy and energy, from large scales to small scales, in which the downscale potential enstrophy cascade coexists with the downscale energy cascade over the same length scale range. We show that, in a temperature-forced two-layer quasi-geostrophic model, the rates with which potential enstrophy and energy are injected place the transition wavenumber${k}_{t} $near${k}_{R} $. We also show that, if the potential energy dominates the kinetic energy in the forcing range, then the Ekman term suppresses the upscale cascading potential enstrophy more than it suppresses the upscale cascading energy, a behaviour contrary to what occurs in two-dimensional turbulence. As a result, the ratio$\eta / \varepsilon $of injected potential enstrophy over injected energy, in the downscale direction, decreases, thereby tending to decrease the transition wavenumber${k}_{t} $further. Using a random Gaussian forcing model, we reach the same conclusion, under the modelling assumption that the asymmetric Ekman term predominantly suppresses the bottom layer forcing, thereby disregarding a possible entanglement between the Ekman term and the nonlinear interlayer interaction. Based on these results, we argue that the Tung–Orlando theory can account for the approximate coincidence between${k}_{t} $and${k}_{R} $. We also identify certain open questions that require further investigation via numerical simulations.


Sign in / Sign up

Export Citation Format

Share Document