Visible photoluminescence from silicon nanoclusters embedded in silicon nitride films prepared by remote plasma-enhanced chemical vapor deposition

2007 ◽  
Vol 38 (1-2) ◽  
pp. 148-151 ◽  
Author(s):  
A. Benami ◽  
G. Santana ◽  
B.M. Monroy ◽  
A. Ortiz ◽  
J.C. Alonso ◽  
...  
1992 ◽  
Vol 284 ◽  
Author(s):  
G. Lucovsky ◽  
Y. Ma ◽  
S. S. He ◽  
T. Yasuda ◽  
D. J. Stephens ◽  
...  

ABSTRACTConditions for depositing quasi-stoichiometric silicon nitride films by low-temperature, remote plasma-enhanced chemical-vapor deposition, RPECVD, have been identified using on-line Auger electron spectroscopy, AES, and off-line optical and infrared, IR, spectroscopies. Quasi-stoichiometric films, by the definition propose in this paper, do not display spectroscopic evidence for Si-Si bonds, but contain bonded-H in Si-H and Si-NH arrangements. Incorporation of RPECVD nitrides into transistor devices has demonstrated that electrical performance is optimized when the films are quasi-stoichiometric with relatively low Si-NH concentrations.


1998 ◽  
Vol 508 ◽  
Author(s):  
A. Izumi ◽  
T. Ichise ◽  
H. Matsumura

AbstractSilicon nitride films prepared by low temperatures are widely applicable as gate insulator films of thin film transistors of liquid crystal displays. In this work, silicon nitride films are formed around 300 °C by deposition and direct nitridation methods in a catalytic chemical vapor deposition system. The properties of the silicon nitride films are investigated. It is found that, 1) the breakdown electric field is over 9MV/cm, 2) the surface state density is about 1011cm−2eV−1 are observed in the deposition films. These result shows the usefulness of the catalytic chemical vapor deposition silicon nitride films as gate insulator material for thin film transistors.


1995 ◽  
Vol 77 (12) ◽  
pp. 6534-6541 ◽  
Author(s):  
Sadanand V. Deshpande ◽  
Erdogan Gulari ◽  
Steven W. Brown ◽  
Stephen C. Rand

1995 ◽  
Vol 377 ◽  
Author(s):  
G. Stevens ◽  
P. Santos-Filho ◽  
S. Habermehl ◽  
G. Lucovsky

ABSTRACTWe have deposited Si-nitride thin films by remote plasma-enhanced chemical-vapor deposition using different combinations of hydrogen and deuterium source gases. In one set of experiments, NH3 and SiH4 were injected downstream from a He plasma and the ratio of NH3 to SiH4 was adjusted so that deposited films contained IR-detectable bonded-H in SiN-H arrangements, but not in Si-H arrangements. Similar results were obtained using the same ND3 to SiD4 flow ratio; these films contained only SiN-D groups. However, films prepared from ND3 and SiH4 displayed both SiN-D and SiN-H groups in essentially equal concentrations establishing that H and D atoms bonded to N are derived from both source gases SiH (D) 4 and NH (D) 3, and further that inter-mixing of H and/or D atoms occurs at the growth surface. This reaction pathway is supported by additional studies in which films were grown from SD4 and ND3 with either i) He or ii) He/H2 mixtures being plasma excited. The films grown from the deuterated source gases without H2, displayed only SiN-D bands, whereas the films grown using the He/H2 mixture displayed both SiN-H and SiN-D bands. The total concentration of N-H and N-D bonds in the films grown from the He/H2 excitation was the same as the concentration of N-D, supporting the surface reaction model. In-situ mass spectrometry provides additional insights in the film deposition reactions.


1991 ◽  
Vol 30 (Part 2, No. 4A) ◽  
pp. L619-L621 ◽  
Author(s):  
Nobuaki Watanabe ◽  
Mamoru Yoshida ◽  
Yi-Chao Jiang ◽  
Tutomu Nomoto ◽  
Ichimatsu Abiko

2007 ◽  
Vol 1036 ◽  
Author(s):  
Stephan Warnat ◽  
Markus Hoefer ◽  
Lothar Schaefer ◽  
Helmut Foell ◽  
Peter Lange

AbstractSilicon nitride films were deposited by hot-wire chemical vapor deposition processes (HW-CVD). The films reveal a morphological structure very similar to nitrides formed in low pressure CVD (LP-CVD) or plasma enhanced CVD (PE-CVD) processes. The electrical breakdown voltages, however, are much smaller for HW- than PE- or LPCVD films. The deposition in holes for isolation purpose in “through silicon vias” (TSV) technologies in combination with optical devices, which require very low temperatures (<200 °C), have been investigated. They reveal sufficiently good properties for the planned applications.


Sign in / Sign up

Export Citation Format

Share Document