Network synchronization in a population of star-coupled fractional nonlinear oscillators

2010 ◽  
Vol 374 (13-14) ◽  
pp. 1464-1468 ◽  
Author(s):  
Junwei Wang ◽  
Yanbin Zhang
Author(s):  
Nguyen Cao Thang ◽  
Luu Xuan Hung

The paper presents a performance analysis of global-local mean square error criterion of stochastic linearization for some nonlinear oscillators. This criterion of stochastic linearization for nonlinear oscillators bases on dual conception to the local mean square error criterion (LOMSEC). The algorithm is generally built to multi degree of freedom (MDOF) nonlinear oscillators. Then, the performance analysis is carried out for two applications which comprise a rolling ship oscillation and two degree of freedom one. The improvement on accuracy of the proposed criterion has been shown in comparison with the conventional Gaussian equivalent linearization (GEL).


2020 ◽  
Vol 4 ◽  
pp. 83-90
Author(s):  
Andrey Kanaev ◽  
◽  
Maria Sakharova ◽  
Evgeny Oparin ◽  

This article provides a simulation model of the process of functioning and restoration of a network clock network (CNS), which is distinguished by the completeness of accounting for the states of the process of functioning of the CNS network. The key indicator of the process of functioning of the CNS network is the duration of the control cycle of the CNS network, which is understood as the time from the moment a failure occurs on the CNS network until the moment the mode of transmission of synchronization signals is restored. On the basis of the developed simulation model of the process of functioning and restoration of the CNS network, the duration of the control cycle of the CNS network is estimated depending on the time spent in individual states of the process of functioning of the TSS network and on the characteristics of individual subsystems of the CNS system. The results obtained can serve as a basis for developing sound strategies and plans for managing the CNS network.


2021 ◽  
pp. 095745652199987
Author(s):  
Magaji Yunbunga Adamu ◽  
Peter Ogenyi

This study proposes a new modification of the homotopy perturbation method. A new parameter alpha is introduced into the homotopy equation in order to improve the results and accuracy. An optimal analysis identifies the parameter alpha, aimed at improving the solutions. A comparative analysis of the proposed method reveals that the new method presents results with higher degree of accuracy and precision than the classic homotopy perturbation method. Absolute error analysis shows the convenience of the proposed method, providing much smaller errors. Two examples are presented: Duffing and Van der pol’s nonlinear oscillators to demonstrate the efficiency, accuracy, and applicability of the new method.


2017 ◽  
Vol 95 (4) ◽  
Author(s):  
Francesco Alderisio ◽  
Gianfranco Fiore ◽  
Mario di Bernardo

Sign in / Sign up

Export Citation Format

Share Document