Parameter identification of commensurate fractional-order chaotic system via differential evolution

2012 ◽  
Vol 376 (4) ◽  
pp. 457-464 ◽  
Author(s):  
Yinggan Tang ◽  
Xiangyang Zhang ◽  
Changchun Hua ◽  
Lixiang Li ◽  
Yixian Yang
2015 ◽  
Vol 11 (6) ◽  
pp. 5306-5316
Author(s):  
De-fu Kong

In this manuscript, the adaptive synchronization of a class of fractional order chaotic system with uncertain parameters is studied. Firstly, the local stability of the fractional order chaotic system is analyzed using fractional stability criterion. Then, based on the J function criterion, suitable adaptive synchronization controller and parameter identification rules of the unknown parameters are investigated. Finally, the numerical simulations are presented to verify the effectiveness and robustness of the proposed control scheme.


Author(s):  
Jiamin Wei ◽  
Yongguang Yu ◽  
YangQuan Chen

Abstract Parameter identification as known as a significant issue is investigated in this paper. The research focus on online identifying unknown parameters of uncertain fractional-order chaotic and hyperchaotic systems, which shows great potential in recent applications. Up to now, most of the existing online identification methods only focus on integer-order systems, thus, it’s necessary to expand these fundamental results to uncertain fractional-order nonlinear dynamic systems and adopt an effective optimizer to deal with the model uncertainties. Motivated by this consideration, this research introduces an efficient optimizer to offline and online parameter identification of the fractional-order chaotic and hyperchaotic systems through non-Lyapunov way. For problem formulation, a multi-dimensional optimization problem is converted into from the problem of parameter identification, where both systematic parameters and fractional derivative orders are considered as independent unknown parameters to be estimated. The experimental results illustrate that SHADE is significantly superior to the other compared approaches. In this case, online identification is conducted via SHADE, the simulation results further indicate that success-history based adaptive differential evolution (SHADE) algorithm is capable of detecting and determining the variations of parameters in uncertain fractional-order chaotic and hyperchaotic systems, and also is supposed to be a successful and potentially promising method for handling the online identification problems with high efficiency and effectiveness.


Entropy ◽  
2019 ◽  
Vol 21 (1) ◽  
pp. 27 ◽  
Author(s):  
Yuexi Peng ◽  
Kehui Sun ◽  
Shaobo He ◽  
Dong Peng

Research on fractional-order discrete chaotic systems has grown in recent years, and chaos synchronization of such systems is a new topic. To address the deficiencies of the extant chaos synchronization methods for fractional-order discrete chaotic systems, we proposed an improved particle swarm optimization algorithm for the parameter identification. Numerical simulations are carried out for the Hénon map, the Cat map, and their fractional-order form, as well as the fractional-order standard iterated map with hidden attractors. The problem of choosing the most appropriate sample size is discussed, and the parameter identification with noise interference is also considered. The experimental results demonstrate that the proposed algorithm has the best performance among the six existing algorithms and that it is effective even with random noise interference. In addition, using two samples offers the most efficient performance for the fractional-order discrete chaotic system, while the integer-order discrete chaotic system only needs one sample.


2017 ◽  
Vol 2017 ◽  
pp. 1-13
Author(s):  
Li Lai ◽  
Yuan-Dong Ji ◽  
Su-Chuan Zhong ◽  
Lu Zhang

Using the dynamic properties of fractional-order Duffing system, a sequential parameter identification method based on differential evolution optimization algorithm is proposed for the fractional-order Duffing system. Due to the step by step parameter identification method, the dimension of parameter identification of each step is greatly reduced and the search capability of the differential evolution algorithm has been greatly improved. The simulation results show that the proposed method has higher convergence reliability and accuracy of identification and also has high robustness in the presence of measurement noise.


Sign in / Sign up

Export Citation Format

Share Document