Effect of viscosity on dust–ion acoustic shock wave in dusty plasma with negative ions

2012 ◽  
Vol 376 (17) ◽  
pp. 1460-1464 ◽  
Author(s):  
Nirab C. Adhikary
2008 ◽  
Vol 15 (6) ◽  
pp. 063701 ◽  
Author(s):  
F. Sayed ◽  
M. M. Haider ◽  
A. A. Mamun ◽  
P. K. Shukla ◽  
B. Eliasson ◽  
...  

2022 ◽  
Vol 9 ◽  
Author(s):  
M.F. Uddin ◽  
M.G. Hafez ◽  
Inho Hwang ◽  
Choonkil Park

In this work, the model equation with space fractional-order (FO) is used to investigate the nonlinear ion acoustic shock wave excitations (NIASWEs) in an unmagnetized collisionless weakly relativistic plasma having inertial relativistic ions fluid with viscous effects, inertial-less non-thermal electrons and inertial-less Boltzmann positrons. To do it, the Korteweg-de Vries Burgers equation (KdVBE) is derived from the considered fluid model equations by implementing the standard reductive perturbation method. Accordingly, such equation is converted to space fractional KdVBE via Agrawal’s variational principle with the help of the beta fractional derivative and its properties. The exact analytical solutions of KdVBE with space FO are determined via the modified Kudryashov method. The influence of space fractional and other related plasma parameters on NIASWEs are investigated. The outcomes would be useful to understand the nature of shocks with the presence of non-local or local space in many astrophysical and space environments (especially in the relativistic wind of pulsar magnetosphere, polar regions of neutron stars, etc.) and further laboratory verification.


2020 ◽  
Vol 10 (17) ◽  
pp. 6115 ◽  
Author(s):  
Md. Golam Hafez ◽  
Parvin Akter ◽  
Samsul Ariffin Abdul Karim

In this work, the effects of plasma parameters on overtaking collisions of ion acoustic multi-shocks are studied in an unmagnetized collisionless plasma with positive and negative ions, and (α,q)-distributed electrons. To investigate such phenomena, the reductive perturbation technique is implemented to derive the Burgers equation. The N-shock wave solution is determined for this equation by directly implementing the exponential function. The result reveals that both the amplitudes and thicknesses of overtaking collisions of N-shock wave compressive and rarefactive electrostatic potential are significantly modified with the influences of viscosity coefficients of positive and negative ions. In addition, the density ratios also play an essential role to the formation of overtaking collisions of N-shocks. It is observed from all theoretical and parametric investigations that the outcomes may be very useful in understanding the dynamical behavior of overtaking collisions of multi-shocks in various environments, especially the D- and F-regions of the Earth’s ionosphere and the future experimental investigations in Q-machine laboratory plasmas.


2015 ◽  
Vol 30 (40) ◽  
pp. 1550216 ◽  
Author(s):  
O. Rahman

The nonlinear propagation of dust-ion-acoustic (DIA) solitary waves (SWs) in an unmagnetized four-component dusty plasma containing electrons and negative ions obeying vortex-like (trapped) velocity distribution, cold mobile positive ions and arbitrarily charged stationary dust has been theoretically investigated. The properties of small but finite amplitude DIASWs are studied by employing the reductive perturbation technique. It has been found that owing to the departure from the Maxwellian electron and Maxwellian negative ion distribution to a vortex-like one, the dynamics of such DIASWs is governed by a modified Korteweg–de Vries (mKdV) equation which admits SW solution under certain conditions. The basic properties (speed, amplitude, width, etc.) of such DIASWs are found to be significantly modified by the presence of trapped electron and trapped negative ions. The implications of our results to space and laboratory dusty electronegative plasmas (DENPs) are briefly discussed.


2016 ◽  
Vol 23 (5) ◽  
pp. 053702 ◽  
Author(s):  
Sumita K. Sharma ◽  
A. Boruah ◽  
Y. Nakamura ◽  
H. Bailung

2016 ◽  
Vol 114 (2) ◽  
pp. 25002 ◽  
Author(s):  
Shimin Guo ◽  
Liquan Mei ◽  
Ya-Ling He ◽  
Huaqi Guo ◽  
Yanjun Zhao

JETP Letters ◽  
2001 ◽  
Vol 74 (7) ◽  
pp. 362-366 ◽  
Author(s):  
S. I. Popel ◽  
A. P. Golub’ ◽  
T. V. Losseva

2009 ◽  
Vol 75 (4) ◽  
pp. 475-493 ◽  
Author(s):  
M. G. M. ANOWAR ◽  
A. A. MAMUN

AbstractThe basic features of obliquely propagating dust-ion-acoustic (DIA) solitary waves, and their multi-dimensional instability in a magnetized multi-ion dusty plasma containing hot adiabatic inertia-less electrons, cold positive and negative ions, and negatively charged static dust have been theoretically investigated by the reductive perturbation method, and the small-k perturbation expansion technique. The combined effects of electron adiabaticity, external magnetic field (obliqueness), and negative ions, which are found to significantly modify the basic properties (speed, amplitude, width, and instability) of small but finite-amplitude DIA solitary waves, are explicitly examined. It is also found that the instability criterion and the growth rate are significantly modified by the external magnetic field, the propagation directions of both the nonlinear waves and their perturbation modes, and the presence of negative ions. The implications of our results in space and laboratory dusty plasmas are briefly discussed.


Sign in / Sign up

Export Citation Format

Share Document