Elastic wave localization and energy harvesting defined by piezoelectric patches on phononic crystal waveguide

2021 ◽  
Vol 403 ◽  
pp. 127366
Author(s):  
Hanbo Shao ◽  
Guoping Chen ◽  
Huan He
Nano Energy ◽  
2020 ◽  
Vol 78 ◽  
pp. 105226 ◽  
Author(s):  
Tae-Gon Lee ◽  
Soo-Ho Jo ◽  
Hong Min Seung ◽  
Sun-Woo Kim ◽  
Eun-Ji Kim ◽  
...  

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Soo-Ho Jo ◽  
Yong Chang Shin ◽  
Wonjae Choi ◽  
Heonjun Yoon ◽  
Byeng D. Youn ◽  
...  

AbstractThis study aims to investigate elastic wave localization that leverages defect band splitting in a phononic crystal with double defects through in-depth analysis of comparison of numerical and experimental results. When more than one defect is created inside a phononic crystal, these defects can interact with each other, resulting in a distinctive physical phenomenon from a single defect case: defect band splitting. For a phononic crystal consisting of circular-hole type unit cells in a thin aluminum plate, under A0 (the lowest antisymmetric) Lamb waves, both numerical simulations and experiments successfully confirm the defect band splitting phenomenon via frequency response functions for the out-of-plane displacement calculated/measured at the double defects within a finite distance. Furthermore, experimental visualization of in-phase and out-of-phase defect mode shapes at each frequency of the split defect bands is achieved and found to be in excellent agreement with the simulated results. Different inter-distance combinations of the double defects reveal that the degree of the defect band splitting decreases with  the increasing distance due to weaker coupling between the defects. This work may shed light on engineering applications of a multiple-defect-introduced phononic crystal, including broadband energy harvesting, frequency detectors, and elastic wireless power transfer.


2020 ◽  
Vol 127 (16) ◽  
pp. 164901 ◽  
Author(s):  
Soo-Ho Jo ◽  
Heonjun Yoon ◽  
Yong Chang Shin ◽  
Miso Kim ◽  
Byeng D. Youn

2015 ◽  
Vol 8 (5) ◽  
pp. 057101 ◽  
Author(s):  
Aichao Yang ◽  
Ping Li ◽  
Yumei Wen ◽  
Chao Yang ◽  
Decai Wang ◽  
...  

Author(s):  
Serife Tol ◽  
F. Levent Degertekin ◽  
Alper Erturk

In this paper, we explore structure-borne elastic wave energy harvesting, both numerically and experimentally, by exploiting a Gradient-Index Phononic Crystal Lens (GRIN-PCL) structure. The proposed GRIN-PCL is formed by an array of blind holes with different diameters on an aluminum plate where the orientation and size of the blind holes are tailored to obtain a hyperbolic secant gradient distribution of refractive index guided by finite-element simulations of the lowest asymmetric mode Lamb wave band diagrams. Under plane wave excitation from a line source, experimentally measured wave field successfully validates the numerical simulation of wave focusing within the GRIN-PCL domain. A piezoelectric energy harvester disk located at the first focus of the GRIN-PCL yields an order of magnitude larger power output as compared to the baseline case of energy harvesting without the GRIN-PCL on the uniform plate counterpart for the same incident plane wave excitation. The power output is further improved by a factor of five using complex electrical load impedance matching through resistive-inductive loading as compared to purely resistive loading case.


Sign in / Sign up

Export Citation Format

Share Document