Elastic wave localization and harvesting using double defect modes of a phononic crystal

2020 ◽  
Vol 127 (16) ◽  
pp. 164901 ◽  
Author(s):  
Soo-Ho Jo ◽  
Heonjun Yoon ◽  
Yong Chang Shin ◽  
Miso Kim ◽  
Byeng D. Youn
2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Soo-Ho Jo ◽  
Yong Chang Shin ◽  
Wonjae Choi ◽  
Heonjun Yoon ◽  
Byeng D. Youn ◽  
...  

AbstractThis study aims to investigate elastic wave localization that leverages defect band splitting in a phononic crystal with double defects through in-depth analysis of comparison of numerical and experimental results. When more than one defect is created inside a phononic crystal, these defects can interact with each other, resulting in a distinctive physical phenomenon from a single defect case: defect band splitting. For a phononic crystal consisting of circular-hole type unit cells in a thin aluminum plate, under A0 (the lowest antisymmetric) Lamb waves, both numerical simulations and experiments successfully confirm the defect band splitting phenomenon via frequency response functions for the out-of-plane displacement calculated/measured at the double defects within a finite distance. Furthermore, experimental visualization of in-phase and out-of-phase defect mode shapes at each frequency of the split defect bands is achieved and found to be in excellent agreement with the simulated results. Different inter-distance combinations of the double defects reveal that the degree of the defect band splitting decreases with  the increasing distance due to weaker coupling between the defects. This work may shed light on engineering applications of a multiple-defect-introduced phononic crystal, including broadband energy harvesting, frequency detectors, and elastic wireless power transfer.


Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 643
Author(s):  
Soo-Ho Jo ◽  
Byeng D. Youn

Several previous studies have been dedicated to incorporating double defect modes of a phononic crystal (PnC) into piezoelectric energy harvesting (PEH) systems to broaden the bandwidth. However, these prior studies are limited to examining an identical configuration of the double defects. Therefore, this paper aims to propose a new design concept for PnCs that examines differently configured double defects for broadband elastic wave energy localization and harvesting. For example, a square-pillar-type unit cell is considered and a defect is considered to be a structure where one piezoelectric patch is bonded to a host square lattice in the absence of a pillar. When the double defects introduced in a PnC are sufficiently distant from each other to implement decoupling behaviors, each defect oscillates like a single independent defect. Here, by differentiating the geometric dimensions of two piezoelectric patches, the defects’ dissimilar equivalent inertia and stiffness contribute to individually manipulating defect bands that correspond to each defect. Hence, with adequately designed piezoelectric patches that consider both the piezoelectric effects on shift patterns of defect bands and the characteristics for the output electric power obtained from a single-defect case, we can successfully localize and harvest the elastic wave energy transferred in broadband frequencies.


2018 ◽  
Vol 12 (1) ◽  
pp. 017001 ◽  
Author(s):  
Aichao Yang ◽  
Caijiang Lu ◽  
Fayuan Wu ◽  
Yu Wu ◽  
Liang Zhu ◽  
...  

Nano Energy ◽  
2020 ◽  
Vol 78 ◽  
pp. 105226 ◽  
Author(s):  
Tae-Gon Lee ◽  
Soo-Ho Jo ◽  
Hong Min Seung ◽  
Sun-Woo Kim ◽  
Eun-Ji Kim ◽  
...  

2011 ◽  
Vol 121-126 ◽  
pp. 448-452
Author(s):  
Yu Yang He ◽  
Xiao Xiong Jin

The width of band gap is calculated with lumped mass method in order to study the wave propagation of longitudinal and transverse elastic wave of one-dimensional phononic crystal. The starting and terminating frequency is analyzed by changing the filling rate, the density difference of two materials, cross-section height ratio, and the Young's modulus of the scatter.


Sign in / Sign up

Export Citation Format

Share Document