scholarly journals Higher order constitutive relations and interface conditions for metamaterials with strong spatial dispersion

2021 ◽  
pp. 127570
Author(s):  
Fatima Z. Goffi ◽  
Andrii Khrabustovskyi ◽  
Ramakrishna Venkitakrishnan ◽  
Carsten Rockstuhl ◽  
Michael Plum
2012 ◽  
Vol 04 (01) ◽  
pp. 1250010 ◽  
Author(s):  
V. P. VALLALA ◽  
G. S. PAYETTE ◽  
J. N. REDDY

In this paper, a finite element model for efficient nonlinear analysis of the mechanical response of viscoelastic beams is presented. The principle of virtual work is utilized in conjunction with the third-order beam theory to develop displacement-based, weak-form Galerkin finite element model for both quasi-static and fully-transient analysis. The displacement field is assumed such that the third-order beam theory admits C0 Lagrange interpolation of all dependent variables and the constitutive equation can be that of an isotropic material. Also, higher-order interpolation functions of spectral/hp type are employed to efficiently eliminate numerical locking. The mechanical properties are considered to be linear viscoelastic while the beam may undergo von Kármán nonlinear geometric deformations. The constitutive equations are modeled using Prony exponential series with general n-parameter Kelvin chain as its mechanical analogy for quasi-static cases and a simple two-element Maxwell model for dynamic cases. The fully discretized finite element equations are obtained by approximating the convolution integrals from the viscous part of the constitutive relations using a trapezoidal rule. A two-point recurrence scheme is developed that uses the approximation of relaxation moduli with Prony series. This necessitates the data storage for only the last time step and not for the entire deformation history.


2005 ◽  
Vol 17 (10) ◽  
pp. 100609 ◽  
Author(s):  
Duncan A. Lockerby ◽  
Jason M. Reese ◽  
Michael A. Gallis

Author(s):  
Ankit Srivastava

What are the constraints placed on the constitutive tensors of elastodynamics by the requirements that the linear elastodynamic system under consideration be both causal (effects succeed causes) and passive (system does not produce energy)? The analogous question has been tackled in other areas but in the case of elastodynamics its treatment is complicated by the higher order tensorial nature of its constitutive relations. In this paper, we clarify the effect of these constraints on highly general forms of the elastodynamic constitutive relations. We show that the satisfaction of passivity (and causality) directly requires that the hermitian parts of the transforms (Fourier and Laplace) of the time derivatives of the constitutive tensors be positive semi-definite. Additionally, the conditions require that the non-hermitian parts of the Fourier transforms of the constitutive tensors be positive semi-definite for positive values of frequency. When major symmetries are assumed these definiteness relations apply simply to the real and imaginary parts of the relevant tensors. For diagonal and one-dimensional problems, these positive semi-definiteness relationships reduce to simple inequality relations over the real and imaginary parts, as they should. Finally, we extend the results to highly general constitutive relations which include the Willis inhomogeneous relations as a special case.


Symmetry ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1104 ◽  
Author(s):  
Markus Lazar ◽  
Jakob Leck

In this paper, we study the theory of second gradient electromagnetostatics as the static version of second gradient electrodynamics. The theory of second gradient electrodynamics is a linear generalization of higher order of classical Maxwell electrodynamics whose Lagrangian is both Lorentz and U ( 1 ) -gauge invariant. Second gradient electromagnetostatics is a gradient field theory with up to second-order derivatives of the electromagnetic field strengths in the Lagrangian. Moreover, it possesses a weak nonlocality in space and gives a regularization based on higher-order partial differential equations. From the group theoretical point of view, in second gradient electromagnetostatics the (isotropic) constitutive relations involve an invariant scalar differential operator of fourth order in addition to scalar constitutive parameters. We investigate the classical static problems of an electric point charge, and electric and magnetic dipoles in the framework of second gradient electromagnetostatics, and we show that all the electromagnetic fields (potential, field strength, interaction energy, interaction force) are singularity-free, unlike the corresponding solutions in the classical Maxwell electromagnetism and in the Bopp–Podolsky theory. The theory of second gradient electromagnetostatics delivers a singularity-free electromagnetic field theory with weak spatial nonlocality.


Entropy ◽  
2020 ◽  
Vol 22 (4) ◽  
pp. 412
Author(s):  
Zdeněk Biolek ◽  
Dalibor Biolek ◽  
Viera Biolková ◽  
Zdeněk Kolka

The paper studies the construction of the Hamiltonian for circuits built from the (α,β) elements of Chua’s periodic table. It starts from the Lagrange function, whose existence is limited to Σ-circuits, i.e., circuits built exclusively from elements located on a common Σ-diagonal of the table. We show that the Hamiltonian can also be constructed via the generalized Tellegen’s theorem. According to the ideas of predictive modeling, the resulting Hamiltonian is made up exclusively of the constitutive relations of the elements in the circuit. Within the frame of Ostrogradsky’s formalism, the simulation scheme of Σ-circuits is designed and examined with the example of a nonlinear Pais–Uhlenbeck oscillator.


2018 ◽  
Vol 55 ◽  
pp. 42-56 ◽  
Author(s):  
Belkacem Kadari ◽  
Aicha Bessaim ◽  
Abdelouahed Tounsi ◽  
Houari Heireche ◽  
Abdelmoumen Anis Bousahla ◽  
...  

This work presents the buckling investigation of embedded orthotropic nanoplates by using a new hyperbolic plate theory and nonlocal small-scale effects. The main advantage of this theory is that, in addition to including the shear deformation effect, the displacement field is modeled with only three unknowns and three governing equation as the case of the classical plate theory (CPT) and which is even less than the first order shear deformation theory (FSDT) and higher-order shear deformation theory (HSDT). A shear correction factor is, therefore, not required. Nonlocal differential constitutive relations of Eringen is employed to investigate effects of small scale on buckling of the rectangular nanoplate. The elastic foundation is modeled as two-parameter Pasternak foundation. The equations of motion of the nonlocal theories are derived and solved via Navier's procedure for all edges simply supported boundary conditions. The proposed theory is compared with other plate theories. Analytical solutions for buckling loads are obtained for single-layered graphene sheets with isotropic and orthotropic properties. The results presented in this study may provide useful guidance for design of orthotropic graphene based nanodevices that make use of the buckling properties of orthotropic nanoplates. Verification studies show that the proposed theory is not only accurate and simple in solving the buckling nanoplates, but also comparable with the other higher-order shear deformation theories which contain more number of unknowns. Keywords: Buckling; orthotropic nanoplates; a simple 3-unknown theory; nonlocal elasticity theory; Pasternak’s foundations. * Corresponding author; [email protected]


Sign in / Sign up

Export Citation Format

Share Document