Higher-Order Finite-Difference Modal Method With Interface Conditions for the Electromagnetic Analysis of Gratings

2012 ◽  
Vol 30 (10) ◽  
pp. 1393-1398 ◽  
Author(s):  
Yih-Peng Chiou ◽  
Chi-Kai Shen
2021 ◽  
pp. 127570
Author(s):  
Fatima Z. Goffi ◽  
Andrii Khrabustovskyi ◽  
Ramakrishna Venkitakrishnan ◽  
Carsten Rockstuhl ◽  
Michael Plum

2001 ◽  
Author(s):  
X. Ai ◽  
B. Q. Li

Abstract Turbulent magnetically flows occur in a wide range of material processing systems involving electrically conducting melts. This paper presents a parallel higher order scheme for the direct numerical simulation of turbulent magnetically driven flows in induction channels. The numerical method is based on the higher order finite difference algorithm, which enjoys the spectral accuracy while minimizing the computational intensity. This, coupled with the parallel computing strategy, provides a very useful means to simulate turbulent flows. The higher order finite difference formulation of magnetically driven flow problems is described in this paper. The details of the parallel algorithm and its implementation for the simulations on parallel machines are discussed. The accuracy and numerical performance of the higher order finite difference scheme are assessed in comparison with the spectral method. The examples of turbulent magnetically driven flows in induction channels and pressure gradient driven flows in regular channels are given, and the computed results are compared with experimental measurements wherever possible.


Sign in / Sign up

Export Citation Format

Share Document