scholarly journals Tachyon field in loop cosmology

2020 ◽  
Vol 811 ◽  
pp. 135859
Author(s):  
Kui Xiao
Keyword(s):  
2009 ◽  
Vol 18 (08) ◽  
pp. 1291-1301 ◽  
Author(s):  
M. R. SETARE ◽  
J. SADEGHI ◽  
A. R. AMANI

Motivated by the recent work of Zhang and Chen,1we generalize their work to the nonminimally coupled case. We consider a quintom model of dark energy with a single scalar field T given by a Lagrangian inspired by a tachyonic Lagrangian in string theory. We consider nonminimal coupling of the tachyon field to the scalar curvature, and then we reconstruct this model in the light of three forms of parametrization for dynamical dark energy.


1994 ◽  
Vol 09 (20) ◽  
pp. 3497-3502 ◽  
Author(s):  
D.G. BARCI ◽  
C.G. BOLLINI ◽  
M.C. ROCCA

We consider a tachyon field whose Fourier components correspond to spatial momenta with modulus smaller than the mass parameter. The plane wave solutions have then a time evolution which is a real exponential. The field is quantized and the solution of the eigenvalue problem for the Hamiltonian leads to the evaluation of the vacuum expectation value of products of field operators. The propagator turns out to be half-advanced and half-retarded. This completes the proof4 that the total propagator is the Wheeler Green function.4,7


2015 ◽  
Vol 24 (03) ◽  
pp. 1550025 ◽  
Author(s):  
João Marto ◽  
Yaser Tavakoli ◽  
Paulo Vargas Moniz

We consider a spherically symmetric gravitational collapse of a tachyon field with an inverse square potential, which is coupled with a barotropic fluid. By employing an holonomy correction imported from loop quantum cosmology (LQC), we analyze the dynamics of the collapse within a semiclassical description. Using a dynamical system approach, we find that the stable fixed points given by the standard general relativistic setting turn into saddle points in the present context. This provides a new dynamics in contrast to the black hole and naked singularities solutions appearing in the classical model. Our results suggest that classical singularities can be avoided by quantum gravity effects and are replaced by a bounce. By a thorough numerical studies we show that, depending on the barotropic parameter γ, there exists a class of solutions corresponding to either a fluid or a tachyon dominated regimes. Furthermore, for the case γ ~ 1, we find an interesting tracking behavior between the tachyon and the fluid leading to a dust-like collapse. In addition, we show that, there exists a threshold scale which determines when an outward energy flux emerges, as a nonsingular black hole is forming, at the corresponding collapse final stages.


2018 ◽  
Vol 33 (34) ◽  
pp. 1850199 ◽  
Author(s):  
A. I. Keskin

In this study, we examine two models of the scalar field, that is, a normal scalar field and a tachyon scalar field in [Formula: see text] gravity to describe cosmic acceleration of the universe, where [Formula: see text], [Formula: see text] and [Formula: see text] are Ricci curvature scalar, trace of energy–momentum tensor and kinetic energy of scalar field [Formula: see text], respectively. Using the minimal-coupling Lagrangian [Formula: see text], for both the scalar models we obtain a viable cosmological system, where [Formula: see text] and [Formula: see text] are real constants. While a normal scalar field gives a system describing expansion from the deceleration to the late-time acceleration, tachyon field together with [Formula: see text] in the system produces a quintessential expansion which is very close to de Sitter point, where we find a new condition [Formula: see text] for inflation.


2019 ◽  
Vol 34 (13) ◽  
pp. 1950098 ◽  
Author(s):  
Can Aktaş

In this paper, we have researched tachyon field, k-essence and quintessence dark energy (DE) models for Friedmann–Robertson–Walker (FRW) universe with varying G and [Formula: see text] in f(R, T) gravitation theory. The theory of f(R, T) is proposed by Harko et al. [Phys. Rev. D 84, 024020, 2011]. In this theory, R is the Ricci scalar and T is the trace of energy–momentum tensor. For the solutions of field equations, we have used linearly varying deceleration parameter (LVDP), the equation of state (EoS) and the ratio between [Formula: see text] and Hubble parameter. Also, we have discussed some physical behavior of the models with various graphics.


2008 ◽  
Vol 134 ◽  
pp. 012010
Author(s):  
Pedro Labraña ◽  
Leonardo Balart ◽  
Sergio del Campo ◽  
Ramon Herrera

2007 ◽  
Vol 68 ◽  
pp. 012042
Author(s):  
Eleftherios Papantonopoulos ◽  
Ioanna Pappa ◽  
Vassilios Zamarias
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document