scholarly journals Measurements of production cross sections of polarized same-sign W boson pairs in association with two jets in proton-proton collisions at s=13 TeV

2021 ◽  
Vol 812 ◽  
pp. 136018
Author(s):  
A.M. Sirunyan ◽  
A. Tumasyan ◽  
W. Adam ◽  
T. Bergauer ◽  
M. Dragicevic ◽  
...  
2019 ◽  
Vol 790 ◽  
pp. 509-532 ◽  
Author(s):  
A.M. Sirunyan ◽  
A. Tumasyan ◽  
W. Adam ◽  
F. Ambrogi ◽  
E. Asilar ◽  
...  

2012 ◽  
Vol 85 (9) ◽  
Author(s):  
L. Adamczyk ◽  
G. Agakishiev ◽  
M. M. Aggarwal ◽  
Z. Ahammed ◽  
A. V. Alakhverdyants ◽  
...  

2011 ◽  
Vol 20 (05) ◽  
pp. 1243-1270 ◽  
Author(s):  
A. I. AHMADOV ◽  
R. M. BURJALIYEV

In this paper, we investigate the next-to-leading order contribution of the higher-twist Feynman diagrams to the large-pT inclusive pion production cross-section in proton–proton collisions and present the general formulae for the higher-twist differential cross-sections in the case of the running coupling and frozen coupling approaches. We compared the resummed next-to-leading order higher-twist cross-sections with the ones obtained in the framework of the frozen coupling approach and leading-twist cross-section. The structure of infrared renormalon singularities of the higher-twist subprocess cross-section and its resummed expression (the Borel sum) are found. It is shown that the resummed result depends on the choice of the meson wave functions used in the calculations. We discuss the phenomenological consequences of possible higher-twist contributions to the meson production in proton–proton collisions in next-to-leading order at RHIC.


Author(s):  
A. M. Sirunyan ◽  
◽  
A. Tumasyan ◽  
W. Adam ◽  
F. Ambrogi ◽  
...  

Abstract Central exclusive and semiexclusive production of "Equation missing" pairs is measured with the CMS detector in proton-proton collisions at the LHC at center-of-mass energies of 5.02 and 13TeV. The theoretical description of these nonperturbative processes, which have not yet been measured in detail at the LHC, poses a significant challenge to models. The two pions are measured and identified in the CMS silicon tracker based on specific energy loss, whereas the absence of other particles is ensured by calorimeter information. The total and differential cross sections of exclusive and semiexclusive central "Equation missing" production are measured as functions of invariant mass, transverse momentum, and rapidity of the "Equation missing" system in the fiducial region defined as transverse momentum "Equation missing" and pseudorapidity "Equation missing". The production cross sections for the four resonant channels "Image missing" , "Equation missing", "Image missing" , and "Image missing" are extracted using a simple model. These results represent the first measurement of this process at the LHC collision energies of 5.02 and 13TeV.


2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
A. M. Sirunyan ◽  
◽  
A. Tumasyan ◽  
W. Adam ◽  
F. Ambrogi ◽  
...  

Abstract The ratios of the production cross sections between the excited ϒ(2S) and ϒ(3S) mesons and the ϒ(1S) ground state, detected via their decay into two muons, are studied as a function of the number of charged particles in the event. The data are from proton-proton collisions at $$ \sqrt{s} $$ s = 7 TeV, corresponding to an integrated luminosity of 4.8 fb−1, collected with the CMS detector at the LHC. Evidence of a decrease in these ratios as a function of the particle multiplicity is observed, more pronounced at low transverse momentum $$ {p}_{\mathrm{T}}^{\upmu \upmu} $$ p T μμ . For ϒ(nS) mesons with $$ {p}_{\mathrm{T}}^{\upmu \upmu} $$ p T μμ > 7 GeV, where most of the data were collected, the correlation with multiplicity is studied as a function of the underlying event transverse sphericity and the number of particles in a cone around the ϒ(nS) direction. The ratios are found to be multiplicity independent for jet-like events. The mean $$ {p}_{\mathrm{T}}^{\upmu \upmu} $$ p T μμ values for the ϒ(nS) states as a function of particle multiplicity are also measured and found to grow more steeply as their mass increases.


Sign in / Sign up

Export Citation Format

Share Document