Modelling the relationship between maternal blood flow and villus tree density in normal human pregnancy

Placenta ◽  
2015 ◽  
Vol 36 (9) ◽  
pp. A13-A14
Author(s):  
Rojan Saghian ◽  
Joanna James ◽  
Sally L. Collins ◽  
Merryn Tawhai ◽  
Alys R. Clark
1955 ◽  
Vol 34 (11) ◽  
pp. 1632-1638 ◽  
Author(s):  
James Metcalfe ◽  
Seymour L. Romney ◽  
Lloyd H. Ramsey ◽  
Duncan E. Reid ◽  
C. Sidney Burwell

Author(s):  
Mair Zamir ◽  
D. Michael Nelson ◽  
Yehuda Ginosar

Normal human pregnancy requires a dramatic increase in uteroplacental blood flow which is achieved by a transformation in the geometry of uterine spiral arteries, a key element in this blood supply system. The transformation is mediated by trophoblast invasion directed at converting a portion of the spiral artery into an open funnel, thereby greatly reducing resistance to flow. The converted portion lies within the depth of the decidua and part of the myometrium. Insufficient depth of trophoblast invasion in early pregnancy predisposes to inadequate perfusion of the developing placenta andfetus and may lead to preeclampsia, fetal growth restriction and preterm delivery, sometimes referred to as the "Great Obstetrical Syndromes". We examine the hemodynamic consequences of spiral artery transformation in human pregnancy and the relationship between the degree of transformation and the corresponding change in flow rate and resistance to flow. We identify two key variables in determining the hemodynamic change: the longitudinal converted fraction of the spiral artery and the relative downstream diameterof the open funnel. Our results indicate that there is a critical threshold in the value of the converted fraction required to achieve the marked increase in uteroplacental blood flow in normal pregnancy. This finding validates common clinical observations that the depth of trophoblast invasion reflects the "adequacy" of the increase in uteroplacental blood supply required in normal human pregnancy. Our results provide a quantitative measure of that adequacy and may serve as a future diagnostic marker for high-risk pregnancy.


VASA ◽  
2012 ◽  
Vol 41 (4) ◽  
pp. 275-281 ◽  
Author(s):  
da Rocha Chehuen ◽  
G. Cucato ◽  
P. dos Anjos Souza Barbosa ◽  
A. R. Costa ◽  
M. Ritti-Dias ◽  
...  

Background: This study assessed the relationship between lower limb hemodynamics and metabolic parameters with walking tolerance in patients with intermittent claudication (IC). Patients and methods: Resting ankle-brachial index (ABI), baseline blood flow (BF), BF response to reactive hyperemia (BFRH), oxygen uptake (VO2), initial claudication distance (ICD) and total walking distance (TWD) were measured in 28 IC patients. Pearson and Spearman correlations were calculated. Results: ABI, baseline BF and BF response to RH did not correlate with ICD or TWD. VO2 at first ventilatory threshold and VO2peak were significantly and positively correlated with ICD (r = 0.41 and 0.54, respectively) and TWD (r = 0.65 and 0.71, respectively). Conclusions: VO2peak and VO2 at first ventilatory threshold, but not ABI, baseline BF and BFHR were associated with walking tolerance in IC patients. These results suggest that VO2 at first ventilatory threshold may be useful to evaluate walking tolerance and improvements in IC patients.


Anaesthesia ◽  
2012 ◽  
Vol 67 (8) ◽  
pp. 936-936 ◽  
Author(s):  
P. Kundra ◽  
J. Velraj ◽  
U. Amirthalingam ◽  
S. Habeebullah ◽  
K. Yuvaraj ◽  
...  

2021 ◽  
Vol 224 (2) ◽  
pp. S215-S216
Author(s):  
Jayasri Basu ◽  
Yingyi Wu ◽  
Sara Oraee ◽  
Diana Encalada ◽  
Aruna Mishra ◽  
...  

2007 ◽  
Vol 74 (1-2) ◽  
pp. 163-169 ◽  
Author(s):  
Attila Molvarec ◽  
János Rigó ◽  
Bálint Nagy ◽  
Szilvia Walentin ◽  
János Szalay ◽  
...  

The spectroscopic determination of the oxygen dissociation curves of haemoglobin has an advantage over the tonometer and gas analysis method, in that much smaller quantities of haemoglobin can be made use of. The spectroscopic method was used to determine the relationship between the foetal and maternal haemoglobins in the sheep during a study of foetal respiration made by Barcroft (1935). The conditions for the comparison of the haemoglobins were a dilute solution of the haemoglobin at p H 9·2 (borate buffer) and at 20° C. These conditions were chosen because of the very accurate determinations of the dissociation curves of dilute haemoglobin of the sheep by Forbes and Roughton (1931) and because these authors recommend p H 9·2 at room temperature as most suitable for a study of the oxygen equilibrium of haemoglobin, all the haemoglobin being in the form of the alkali salt. McCarthy (1933) and Hall (1934) had found previously that the haemoglobins of the foetal and maternal goat were different, the foetal haemoglobin (in the blood and as purified haemoglobin) having a higher affinity for oxygen. The same relationship was found to exist in the sheep haemoglobins in dilute solution at 20° C and p H 9·2. When samples of human foetal and maternal blood (sent by Professor Fleming from the Obstetrical Department of the Royal Free Hospital) were compared in dilute solution it was found that the foetal haemoglobin had a lower affinity for oxygen than the maternal. This was also found by Haurowitz (1935) for dilute solutions of the haemoglobins of mother and new born infant. Haurowitz, however, pointed out that in the corpuscles the affinity for oxygen is less in the infant’s haemoglobin than in that of the mother, but the method used by him did not allow of measurements on suspensions of corpuscles. In the present work the dissociation curves of dilute suspensions of corpuscles have been compared with similar solutions of the haemoglobin. It was found that the relationship of the dissociation curves for human foetal and maternal corpuscles is the same as that found by Barcroft in the goat and in the sheep. It has now been found that by a dilution of human adult haemoglobin the dissociation curve is altered by 200% to a position of higher affinity for oxygen, without any marked change in shape. The haemoglobin of the human foetus, on the other hand, is much less affected by dilution, thus explaining the anomaly of the reversed relationship when solutions of the haemoglobins are used instead of suspensions of corpuscles. It was shown by the work of Bock, Field, and Adair (1924), and by Adair (1925), that a solution of haemoglobin free from stromata and of a similar concentration to blood gives a dissociation curve like whole blood. This makes it clear that in the comparison of dilute haemoglobin solutions with suspensions of corpuscles we are concerned, not simply with a change in the haemoglobin due to haemolysis, but a change due to a dilution of the contents of the corpuscle.


Sign in / Sign up

Export Citation Format

Share Document