Overexpression of a grapevine R2R3-MYB factor in tomato affects vegetative development, flower morphology and flavonoid and terpenoid metabolism

2009 ◽  
Vol 47 (7) ◽  
pp. 551-561 ◽  
Author(s):  
Ali Mahjoub ◽  
Michel Hernould ◽  
Jérôme Joubès ◽  
Alain Decendit ◽  
Mohamed Mars ◽  
...  
2015 ◽  
Vol 89 ◽  
pp. 24-30 ◽  
Author(s):  
Xia Meng ◽  
Dongyue Yang ◽  
Xiaodong Li ◽  
Shuya Zhao ◽  
Na Sui ◽  
...  

2019 ◽  
Vol 9 ◽  
Author(s):  
Yueqing Li ◽  
Xiaotong Shan ◽  
Liudi Zhou ◽  
Ruifang Gao ◽  
Song Yang ◽  
...  
Keyword(s):  
R2r3 Myb ◽  

2022 ◽  
Vol 12 ◽  
Author(s):  
Lu Zhao ◽  
Zhongbang Song ◽  
Bingwu Wang ◽  
Yulong Gao ◽  
Junli Shi ◽  
...  

Proanthocyanidins (PAs) are important phenolic compounds and PA biosynthesis is regulated by a ternary MBW complex consisting of a R2R3-MYB regulator, a bHLH factor and a WDR protein. In this study, a tobacco R2R3-MYB factor NtMYB330 was characterized as the PA-specific regulator in which the PA biosynthesis was promoted in the flowers of NtMYB330-overexpressing lines while decreased in the flowers of ntmyb330 mutants. NtMYB330 can interact with flavonoid-related bHLH partner NtAn1b and WDR protein NtAn11-1, and the NtMYB330-NtAn1b complex is required to achieve strong transcriptional activation of the PA-related structural genes NtDFR1, NtANS1, NtLAR1 and NtANR1. Our data reveal that NtMYB330 regulates PA biosynthesis in seeds and affects seed germination, in which NtMYB330-overexpressing lines showed higher PA accumulations in seed coats and inhibited germination, while ntmyb330 mutants had reduced seed coat PAs and improved germination. NtMYB330 affects seed germination possibly through two mechanisms: modulating seed coat PAs to affect coat-imposed dormancy. In addition, NtMYB330 regulates the expressions of abscisic acid (ABA) and gibberellin acid (GA) signaling-related genes, affecting ABA-GA crosstalk and seed germination. This study reveals that NtMYB330 specifically regulates PA biosynthesis via formation of the MBW complex in tobacco flowers and affects germination through adjustment of PA concentrations and ABA/GA signaling in tobacco seeds.


2021 ◽  
Vol 1 (1) ◽  
pp. 1-12
Author(s):  
Kai Feng ◽  
◽  
Guo-Ming Xing ◽  
Jie-Xia Liu ◽  
Hao Wang ◽  
...  

2015 ◽  
Vol 5 (1) ◽  
pp. 513-522
Author(s):  
Jean-Claude N'ZI ◽  
Lassina FONDIO ◽  
Mako Francois De Paul N’GBESSO ◽  
Andé Hortense DJIDJI ◽  
Christophe KOUAME

Thirty accessions of tomato including twenty eight introduced accessions from The World Vegetable Center-AVRDC and as controls, two commercial varieties Mongal and Calinago, were assessed for agronomic performances at the Experimentation and Production Station of Angud dou of the National Agronomic Research Centre (CNRA) located in the South of Cote d Ivoire. The trial was arranged in a randomized block with three replications. The following parameters were determined at vegetative development stage: plant height at flowering stage, susceptibility of accessions to diseases, day to 50% flowering and day of first harvest, production duration, fruit length, fruit diameter, total number of fruits, number of fruits per plant, potential yield, net yield and fruit damage rate. Results showed that the commercial variety Mongal, with a potential yield of 15.9 and a net yield of 13.1 t ha-1, was the most productive. All the introduced accessions from AVRDC recorded the lowest potential yields from 2.2 to 9.7 t ha-1, and net yields from 1.7 to 8.6 t ha-1. In addition, accessions WVCT8, FMTT847 and WVCT13 were severely infested by bacterial wilt. The reduction of the net yield of tomato accessions resulted in the high fruit damage rates. For the future tomato breeding work, it would be appropriate to introduce into the trials bacterial diseases tolerant varieties. Moreover, some studies could be undertaken to determine the nature of the bacteria involved in the plant wilting and to find out the causal agent of the tomato plants burning at the fructification stage reducing the harvest duration.


Author(s):  
M.Yu. Cherednichenko M.Yu. ◽  
◽  
A.S. Elenchuk A.S.

The article presents the characteristics of the geographical distribution of broadleaved lavender, as well as the features of the flower morphology of this species in comparison with other common species of the genus.


Crop Science ◽  
1967 ◽  
Vol 7 (5) ◽  
pp. 409-412 ◽  
Author(s):  
Restituto R. Lopez ◽  
Arthur G. Matches ◽  
J. D. Baldridge

Author(s):  
Junping Yu ◽  
Guolong Zhao ◽  
Wei Li ◽  
Ying Zhang ◽  
Peng Wang ◽  
...  

Abstract Key message Identification and functional analysis of the male sterile gene MS6 in Glycine max. Abstract Soybean (Glycine max (L.) Merr.) is an important crop providing vegetable oil and protein. The male sterility-based hybrid breeding is a promising method for improving soybean yield to meet the globally growing demand. In this research, we identified a soybean genic male sterile locus, MS6, by combining the bulked segregant analysis sequencing method and the map-based cloning technology. MS6, highly expressed in anther, encodes an R2R3 MYB transcription factor (GmTDF1-1) that is homologous to Tapetal Development and Function 1, a key factor for anther development in Arabidopsis and rice. In male sterile ms6 (Ames1), the mutant allele contains a missense mutation, leading to the 76th leucine substituted by histidine in the DNA binding domain of GmTDF1-1. The expression of soybean MS6 under the control of the AtTDF1 promoter could rescue the male sterility of attdf1 but ms6 could not. Additionally, ms6 overexpression in wild-type Arabidopsis did not affect anther development. These results evidence that GmTDF1-1 is a functional TDF1 homolog and L76H disrupts its function. Notably, GmTDF1-1 shows 92% sequence identity with another soybean protein termed as GmTDF1-2, whose active expression also restored the fertility of attdf1. However, GmTDF1-2 is constitutively expressed at a very low level in soybean, and therefore, not able to compensate for the MS6 deficiency. Analysis of the TDF1-involved anther development regulatory pathway showed that expressions of the genes downstream of TDF1 are significantly suppressed in ms6, unveiling that GmTDF1-1 is a core transcription factor regulating soybean anther development.


Sign in / Sign up

Export Citation Format

Share Document