Spatial and temporal distribution of genes involved in polyamine metabolism during tomato fruit development

2016 ◽  
Vol 100 ◽  
pp. 27-36 ◽  
Author(s):  
Georgios Tsaniklidis ◽  
Anastasios Kotsiras ◽  
Athanasios Tsafouros ◽  
Peter A. Roussos ◽  
Georgios Aivalakis ◽  
...  
2017 ◽  
Vol 37 (04) ◽  
pp. 225-233 ◽  
Author(s):  
Babacar Labou ◽  
Thierry Brévault ◽  
Serigne Sylla ◽  
Mamadou Diatte ◽  
Dominique Bordat ◽  
...  

Abstract In Senegal, damage caused by insect pests is a major obstacle to seasonal stability and an increase in cabbage production. Little is known about the spatial and temporal distribution of cabbage pests, which makes the design of management recommendations to small-scale farmers challenging. The objectives of this study were to: (i) evaluate the status of insect pests observed in cabbage farmers’ fields; (ii) give information on the spatial and temporal distribution of key pests and (iii) assess the effect of temperature, insecticide applications, and host crop abundance on their incidence. A total of 116 cabbage fields were monitored for insect pests and related damage over four crop cycles, from October 2012 to May 2014, in the main vegetable producing area of Senegal (Niayes). The diamondback moth Plutella xylostella (L.) was by far the most important pest present in all the fields and with high levels of incidence (37.1% infested plants), particularly in the latter part of the dry season in the South of Niayes (50% infested plants). The cabbage webworm Hellula undalis (F.) was mainly observed in the early dry season in the south of Niayes, with an incidence of up to 12.5% infested plants. More surprising was the detection of the tomato fruit worm Helicoverpa armigera (Hübner), with damage of up to 9.4% of cabbage heads. The incidence of sucking pests such as whiteflies Bemisia tabaci (Gennadius), or aphids (including Lipaphis pseudobrassicae (Davis, 1914), Myzus persicae (Sulzer) or Brevicoryne brassicae (L.)) was generally low. The incidence of P. xylostella increased significantly with the number of insecticide applications, indicating that control deployed by growers was ineffective. The incidence of H. undalis did not depend on the number of insecticide applications, but significantly increased with host crop abundance and decreased with temperature. This study is a first step towards developing alternative pest management strategies in the framework of sustainable vegetable production systems.


2006 ◽  
Author(s):  
Ilan Levin ◽  
Avtar K. Handa ◽  
Avraham Lalazar ◽  
Autar K. Mattoo

Fruit constitutes a major component of our diet, providing fiber, vitamins, minerals, and many other phytonutrients that promote good health. Fleshy fruits, such as tomatoes, already contain high levels of several of these ingredients. Nevertheless, efforts have been invested in increasing and diversifying the content of phytonutrients, such as carotenoids and flavonoids, in tomato fruits. Increasing levels of phytonutrients, such as lycopene, is highly justified from the perspective of the lycopene extraction industry due to cost effectiveness reasons. Diversifying phytonutrients, in particular those that contribute to fruit color, could potentially provide an array of attractive colors to our diet. Our major goal was to devise a novel strategy for developing tomato fruits with enhanced levels of phytochemicals known to promote good health with special emphasis on lycopene content. A further important goal was to analyze global gene expression of selected genetic lines produced throughout this study in order is to dissect the molecular mechanisms regulating phytonutrients accumulation in the tomato fruit. To achieve these goals we proposed to: 1. combine, by classical breeding, engineered polyamine metabolism with photomorphogenic high pigment mutants in order generate tomato plant with exceptionally high levels of phytonutrients; 2. use gene transfer technology for genetic introduction of key genes that promote phytonutrient accumulation in the tomato fruit, 3. Analyze accumulation patterns of the phytonutrients in the tomato fruit during ripening; 4. Analyze global gene expression during fruit ripening in selected genotypes identified in objectives 1 and 2, and 5. Identify and analyze regulatory mechanisms of chloroplast disassembly and chromoplast formation. During the 3 years research period we have carried out most of the research activities laid out in the original proposal and our key conclusions are as follows: 1. the engineered polyamine metabolism strategy proposed by the US collaborators can not increase lycopene content either on its own or in combination with an hp mutant (hp-2ᵈᵍ); 2. The hp-2ᵈᵍ affects strongly the transcriptional profile of the tomato fruit showing a strong tendency for up- rather than down-regulation of genes, 3. Ontology assignment of these miss-regulated genes revealed a consistent up-regulation of genes related to chloroplast biogenesis and photosynthesis in hp-2ᵈᵍ mutants throughout fruit development; 4. A tendency for up-regulation was also usually observed in structural genes involved in phytonutrientbiosynthesis; however this up-regulation was not as consistent. 5. Microscopic observations revealed a significantly higher number of chloroplasts in pericarp cells of mature-green hp-2ᵈᵍ/hp-2ᵈᵍ fruits in comparison to their normal fully isogenic counterparts. 6. The relative abundance of chloroplasts could be observed from early stages of fruit development. Cumulatively these results suggest that: 1. the overproduction of secondary metabolites, characterizing hp-2ᵈᵍ/hp-2ᵈᵍ fruits, is more due to chloroplast number rather then to transcriptional activation of structural genes of the relevant metabolic pathways, and 2. The molecular trigger increasing metabolite levels in hp-2ᵈᵍ mutant fruits should be traced at early stage of fruit development.


Sign in / Sign up

Export Citation Format

Share Document