scholarly journals A molecular dynamics-guided mutagenesis identifies two aspartic acid residues involved in the pH-dependent activity of OG-OXIDASE 1

Author(s):  
Anna Scortica ◽  
Matteo Capone ◽  
Daniele Narzi ◽  
Mario Frezzini ◽  
Valentina Scafati ◽  
...  
Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 334
Author(s):  
Shih-Ting Hong ◽  
Yu-Cheng Su ◽  
Yu-Jen Wang ◽  
Tian-Lu Cheng ◽  
Yeng-Tseng Wang

Humira is a monoclonal antibody that binds to TNF alpha, inactivates TNF alpha receptors, and inhibits inflammation. Neonatal Fc receptors can mediate the transcytosis of Humira–TNF alpha complex structures and process them toward degradation pathways, which reduces the therapeutic effect of Humira. Allowing the Humira–TNF alpha complex structures to dissociate to Humira and soluble TNF alpha in the early endosome to enable Humira recycling is crucial. We used the cytoplasmic pH (7.4), the early endosomal pH (6.0), and pKa of histidine side chains (6.0–6.4) to mutate the residues of complementarity-determining regions with histidine. Our engineered Humira (W1-Humira) can bind to TNF alpha in plasma at neutral pH and dissociate from the TNF alpha in the endosome at acidic pH. We used the constant-pH molecular dynamics, Gaussian accelerated molecular dynamics, two-dimensional potential mean force profiles, and in vitro methods to investigate the characteristics of W1-Humira. Our results revealed that the proposed Humira can bind TNF alpha with pH-dependent affinity in vitro. The W1-Humira was weaker than wild-type Humira at neutral pH in vitro, and our prediction results were close to the in vitro results. Furthermore, our approach displayed a high accuracy in antibody pH-dependent binding characteristics prediction, which may facilitate antibody drug design. Advancements in computational methods and computing power may further aid in addressing the challenges in antibody drug design.


2018 ◽  
Vol 20 (5) ◽  
pp. 3523-3530 ◽  
Author(s):  
Zhi Yue ◽  
Jana Shen

Constant pH molecular dynamics simulations of BBL reveals negligible folding free energy barrier that is pH dependent and a sparsely populated dry molten globule state.


2019 ◽  
Vol 116 (3) ◽  
pp. 83a ◽  
Author(s):  
Luis Santiago-Ortiz ◽  
Morgan Hitchner ◽  
Thaddeus Palmer ◽  
Gregory A. Caputo

2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Jonas Schmid ◽  
Julia Bechtner ◽  
Rudi F. Vogel ◽  
Frank Jakob

Abstract Background Dextransucrases are extracellular enzymes, which catalyze the formation of α-1→6-linked glucose polymers from sucrose. These enzymes are exclusively expressed by lactic acid bacteria, which commonly acidify the extracellular environment due to their physiology. Dextransucrases are thus confronted with steadily changing reaction conditions in regards to the environmental pH, which can further affect the amount of released dextransucrases. In this work, we studied the effect of the environmental pH on the release, the productivity and the product specificity of the dextransucrase expressed by Lactobacillus (L.) hordei TMW 1.1822. Dextransucrases were recovered as crude extracts at pH 3.5–pH 6.5 and then again used to produce dextrans at these pH values. The respectively produced dextran amounts and sizes were determined and the obtained results finally systematically correlated. Results Maximum dextran amounts were produced at pH 4.0 and pH 4.5, while the productivity of the dextransucrases significantly decreased at pH 3.5 and pH 6.5. The distribution of dextran amounts produced at different pH most likely reflects the pH dependent activity of the dextransucrases released by L. hordei, since different transglycosylation rates were determined at different pH using the same dextransucrase amounts. Moreover, similar hydrolysis activities were detected at all tested conditions despite significant losses of transglycosylation activities indicating initial hydrolysis prior to transglycosylation reactions. The molar masses and rms radii of dextrans increased up to pH 5.5 independently of the stability of the enzyme. The gelling properties of dextrans produced at pH 4.0 and pH 5.5 were different. Conclusions The presented methodological approach allows the controlled production of dextrans with varying properties and could be transferred and adapted to other microbes for systematic studies on the release and functionality of native sucrases or other extracellular enzymes.


2014 ◽  
Vol 119 (3) ◽  
pp. 861-872 ◽  
Author(s):  
M. Olivia Kim ◽  
Patrick G. Blachly ◽  
Joseph W. Kaus ◽  
J. Andrew McCammon

2016 ◽  
Vol 4 (46) ◽  
pp. 7441-7451 ◽  
Author(s):  
Mina Mahdavi ◽  
Farzin Rahmani ◽  
Sasan Nouranian

We investigated the pH-dependent energetics and mechanisms of doxorubicin (DOX) drug adsorption on graphene oxide nanocarriers using molecular dynamics simulation.


Sign in / Sign up

Export Citation Format

Share Document