product specificity
Recently Published Documents


TOTAL DOCUMENTS

196
(FIVE YEARS 41)

H-INDEX

36
(FIVE YEARS 4)

2021 ◽  
Vol 12 ◽  
Author(s):  
Lu Liu ◽  
Zhipeng Wang ◽  
Zhihong Zheng ◽  
Ze Li ◽  
Xiaofeng Ji ◽  
...  

Alginate lyase possesses wide application prospects for the degradation of brown algae and preparation of alginate oligosaccharides, and its degradation products display a variety of biological activities. Although many enzymes of this type have been reported, alginate lyases with unique properties are still relatively rare. In the present work, an alginate lyase abbreviated as Alyw203 has been cloned from Vibrio sp. W2 and expressed in food-grade Yarrowia lipolytica. The Alyw203 gene consists of an open reading frame (ORF) of 1,566 bp containing 521 amino acids, of which the first 17 amino acids are considered signal peptides, corresponding to secretory features. The peak activity of the current enzyme appears at 45°C with a molecular weight of approximately 57.0 kDa. Interestingly, Alyw203 exhibits unique heat recovery performance, returning above 90% of its initial activity in the subsequent incubation for 20 min at 10°C, which is conducive to the recovery of current enzymes at low-temperature conditions. Meanwhile, the highest activity is obtained under alkaline conditions of pH 10.0, showing outstanding pH stability. Additionally, as an alginate lyase independent of NaCl and resistant to metal ions, Alyw203 is highly active in various ionic environments. Moreover, the hydrolyzates of present enzymes are mainly concentrated in the oligosaccharides of DP1–DP2, displaying perfect product specificity. The alkali suitability, heat recovery performance, and high oligosaccharide yield of Alyw203 make it a potential candidate for industrial production of the monosaccharide and disaccharide.


2021 ◽  
Author(s):  
Nick Wierckx ◽  
Katharina Miebach ◽  
Nina Ihling ◽  
Kai P. Hussnaetter ◽  
Jochen Büchs ◽  
...  

Abstract Basidiomycetes fungi of the family Ustilaginaceae are mainly known as plant pathogens causing smut disease on crops and grasses. However, they are also natural producers of value-added substances like glycolipids, organic acids, polyols, and harbor secretory enzymes with promising hydrolytic activities. These attributes recently evoked increasing interest in their biotechnological exploitation. The corn smut fungus Ustilago maydis is the best characterized member of the Ustilaginaceae. After decades of research in the fields of genetics and plant pathology, a broad method portfolio and detailed knowledge on its biology and biochemistry are available. As a consequence, U. maydis has developed into a versatile model organism not only for fundamental research but also for applied biotechnology. Novel genetic, synthetic biology, and process development approaches have been implemented to engineer yields and product specificity as well as for the expansion of the repertoire of produced substances. Furthermore, research on U. maydis also substantially promoted the interest in other members of the Ustilaginaceae, for which the available tools can be adapted. Here, we review the latest developments in applied research on Ustilaginaceae towards their establishment as future biotech cell factories.


2021 ◽  
Author(s):  
Aleksa Stanišić ◽  
Annika Hüsken ◽  
Philipp Stephan ◽  
David L. Niquille ◽  
Jochen Reinstein ◽  
...  

<div> <p>Engineering of nonribosomal peptide synthetases (NRPS) has faced numerous obstacles despite being an attractive path towards novel bioactive molecules. Specificity filters in the nonribosomal peptide assembly line determine engineering success, but the relative contribution of adenylation (A-) and condensation (C-)domains is under debate. In the engineered, bimodular NRPS sdV-GrsA/GrsB1, the first module is a subdomain-swapped chimera showing substrate promiscuity. On sdV-GrsA and evolved mutants, we have employed kinetic modelling to investigate product specificity under substrate competition. Our model contains one step, in which the A-domain acylates the thiolation (T-)domain, and one condensation step deacylating the T-domain. The simplified model agrees well with experimentally determined acylation preferences and shows that the condensation specificity is mismatched with the engineered acylation specificity. Our model predicts changing product specificity in the course of the reaction due to dynamic T-domain loading, and that A-domain overrules C-domain specificity when T-domain loading reaches a steady-state. Thus, we have established a tool for investigating poorly accessible C-domain specificity through nonlinear kinetic modeling and gained critical insights how the interplay of A- and C-domains determines the product specificity of NRPSs.</p> </div>


2021 ◽  
Author(s):  
Aleksa Stanišić ◽  
Annika Hüsken ◽  
Philipp Stephan ◽  
David L. Niquille ◽  
Jochen Reinstein ◽  
...  

<div> <p>Engineering of nonribosomal peptide synthetases (NRPS) has faced numerous obstacles despite being an attractive path towards novel bioactive molecules. Specificity filters in the nonribosomal peptide assembly line determine engineering success, but the relative contribution of adenylation (A-) and condensation (C-)domains is under debate. In the engineered, bimodular NRPS sdV-GrsA/GrsB1, the first module is a subdomain-swapped chimera showing substrate promiscuity. On sdV-GrsA and evolved mutants, we have employed kinetic modelling to investigate product specificity under substrate competition. Our model contains one step, in which the A-domain acylates the thiolation (T-)domain, and one condensation step deacylating the T-domain. The simplified model agrees well with experimentally determined acylation preferences and shows that the condensation specificity is mismatched with the engineered acylation specificity. Our model predicts changing product specificity in the course of the reaction due to dynamic T-domain loading, and that A-domain overrules C-domain specificity when T-domain loading reaches a steady-state. Thus, we have established a tool for investigating poorly accessible C-domain specificity through nonlinear kinetic modeling and gained critical insights how the interplay of A- and C-domains determines the product specificity of NRPSs.</p> </div>


Author(s):  
Ishmael Mutanda ◽  
Jianhua Li ◽  
Fanglin Xu ◽  
Yong Wang

The diterpenoid paclitaxel (Taxol®) is a blockbuster anticancer agent that was originally isolated from the Pacific yew (Taxus brevifolia) five decades ago. Despite the wealth of information gained over the years on Taxol research, there still remains supply issues to meet increasing clinical demand. Although alternative Taxol production methods have been developed, they still face several drawbacks that cause supply shortages and high production costs. It is highly desired to develop biotechnological production platforms for Taxol, however, there are still gaps in our understanding of the biosynthetic pathway, catalytic enzymes, regulatory and control mechanisms that hamper production of this critical drug by synthetic biology approaches. Over the past 5 years, significant advances were made in metabolic engineering and optimization of the Taxol pathway in different hosts, leading to accumulation of taxane intermediates. Computational and experimental approaches were leveraged to gain mechanistic insights into the catalytic cycle of pathway enzymes and guide rational protein engineering efforts to improve catalytic fitness and substrate/product specificity, especially of the cytochrome P450s (CYP450s). Notable breakthroughs were also realized in engineering the pathway in plant hosts that are more promising in addressing the challenging CYP450 chemistry. Here, we review these recent advances and in addition, we summarize recent transcriptomic data sets of Taxus species and elicited culture cells, and give a bird’s-eye view of the information that can be gleaned from these publicly available resources. Recent mining of transcriptome data sets led to discovery of two putative pathway enzymes, provided many lead candidates for the missing steps and provided new insights on the regulatory mechanisms governing Taxol biosynthesis. All these inferences are relevant to future biotechnological production of Taxol.


Author(s):  
Mamta Sagar ◽  
Pramod Wasudev Ramteke ◽  
Ravindra Nath Katiyar ◽  
Shameem Ahmad

Metabolic Control Analysis provides a quantitative description of concentration dynamics with the change in system parameters. A metabolic Control Analysis aids determination of the threshold value of metabolites involved in a reaction and also helps to understand the role of various parameters in a reaction. In this work, a metabolic model of a Naringenine chalcone biosynthetic reaction is defined and a time series simulation was carried out based on the law of Mass action. Initial concentration of p-Coumaroyl-CoA and Malonyl-CoA were taken 5.0*10-2 mM 2.2*10-3 mM respectively. This concentration was then simulated over time for 10 seconds to find the steady state. Final concentration of  Naringenine chalcone,CO2, and CoA becomes 8.593946e-004 mM after 5.00 second of simulation at reaction constant 6.587753e-005 mM*ml/s. Steady state solution shows that Initial concentration of Naringenine chalcone was 2.199777e-003 mM which is eventually converted into 2.785128e+013 seconds half-life concentration of product at 7.898e-017 mM/s rate and  0.000000e+000 mM*ml/s  rate constant. Phenylpropanoid pathway was analysed to predict all the enzymes that can maximise and minimise the concentration of  Malonyl-CoA and P-Coumaroyl-CoA which leads to flavonoid biosynthesis. In the Phenylpropanoid pathway four enzymes Phenylalanine/tyrosine ammonia lyase, trans-cinnamate 4-monooxygenase, Phenylalanine ammonia lyase, maximise the flavonoid biosynthesis. This analysis shows that other enzymes minimise the concentrations of  Malonyl-CoA and P-coumaroyl-CoA, these are Cinnamoyl Co A reductase, shikimate O hydroxyl transferase HCT), Oxidoreductase. Furthermore, Protein domain analysis of chalcone synthase mutants ( 1jwx Medicago sativa and 4yjy from Oryza sativa) was done to predict structural features to understand reaction mechanism and structure-based engineering to maximise flavonoid biosynthesis. Natural sequence variation CHS G256A, G256V, G256L, and G256F mutants of residue 256 reduce the size of the active site cavity but quick diversification of product specificity occurs. The threshold concentration of Malonyl-CoA and P-coumaroyl-CoA were predicted, maximisation of this concentration leads to enhanced flavonoid biosynthesis. Inhibition of few enzymes may also maximise the flavonoid biosynthesis if appropriate inhibitors are used and a constant supply of Malonyl-CoA and P-Coumaroyl-CoA is maintained using activator molecules. Chalcone synthase Mutants diversify product specificity that occurs without loss of catalytic activity and any conformational changes.


2020 ◽  
Vol 70 (1) ◽  
Author(s):  
Menglu Duan ◽  
Yan Wang ◽  
Guowu Yang ◽  
Jiao Li ◽  
Yi Wan ◽  
...  

Abstract Purpose γ-Cyclodextrin glycosyltransferase (γ-CGTase) catalyzes the biotransformation of low-cost starch into valuable γ-cyclodextrin (γ-CD), which is widely applied in biotechnology, food, and pharmaceutical industries. However, the low specificity and activity of soluble γ-CGTase increase the production cost of γ-CD, thereby limiting its applications. Therefore, the present study aimed at optimizing an economical medium for high production of γ-CGTase by the recombinant Escherichia coli (E. coli) BL21 (DE3) and evaluating its enzymatic properties and product specificity. Methods The γ-CGTase production was optimized using the combination of Plackett-Burman experimental design (PBD) and Box-Behnken design-response surface methodology (BBD-RSM). The hydrolysis and cyclization properties of γ-CGTase were detected under the standard assay conditions with buffers of various pHs and different reaction temperatures. The product specificity of γ-CGTase was investigated by high-performance liquid chromatography (HPLC) analysis of three CDs (α-, β-, γ-CD) in the biotransformation product of cassava starch. Results The γ-CGTase activity achieved 53992.10 U mL−1 under the optimum conditions with the significant factors (yeast extract 38.51 g L−1, MgSO4 4.19 mmol L−1, NiSO4 0.90 mmol L−1) optimized by the combination of PBD and BBD-RSM. The recombinant γ-CGTase exhibited favorable stability in a wide pH and temperature range and maintained both the hydrolysis and cyclization activity under the pH 9.0 and 50 °C. Further analysis of the products from cassava starch catalyzed by the γ-CGTase reported that the majority (90.44%) of product CDs was the γ form, which was nearly 11% higher than the wild enzyme. Cyclododecanone added to the transformation system could enhance the γ-CD purity to 98.72%, which is the highest purity value during the transformation process reported so far. Conclusion The yield of γ-CGTase activity obtained from the optimized medium was 2.83-fold greater than the unoptimized medium, and the recombinant γ-CGTase exhibited a favorable thermal and pH stability, and higher γ-cyclization specificity. These results will provide a fundamental basis for the high productivity and purity of γ-CD in the industrial scale.


Sign in / Sign up

Export Citation Format

Share Document