gelling properties
Recently Published Documents


TOTAL DOCUMENTS

361
(FIVE YEARS 127)

H-INDEX

38
(FIVE YEARS 9)

2022 ◽  
Vol 372 ◽  
pp. 131136
Author(s):  
Na Jia ◽  
Shiwen Lin ◽  
Fengxue Zhang ◽  
Duoduo Zheng ◽  
Dengyong Liu

Foods ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 183
Author(s):  
Aloisa G. Deriu ◽  
Antonio J. Vela ◽  
Felicidad Ronda

Fonio (Digitaria exilis Stapf) is an ancient African cereal that represents a rich source of carbohydrate, fat, fiber, vitamins, minerals, and sulfur-containing amino acids. Processing and utilization of fonio require adequate knowledge of its structural, chemical, and nutritional characteristics. The present work evaluates the structural, techno-functional, and gelling properties of fonio and compares them to other major gluten-free cereals (rice, maize, sorghum, and millet). Fonio flour presented significantly higher water absorption index and swelling power, while it scored a lower water solubility index than the reference flours. The pasting viscosity profile of fonio was similar to that of rice, with equivalent peak viscosity but a breakdown viscosity 24% lower than rice, indicative of higher stability and resistance to shearing and heating. Rheological properties demonstrated that fonio generates gels with remarkably strong structures. At 15% concentration, fonio gel withstood stress 579% higher than those observed in the reference flours without breaking its structure. Fonio flour presented the highest gelatinization enthalpy (11.45 J/g) and a narrow gelatinization temperature range (9.96 °C), indicative of a better-packed starch structure than the other analyzed flours. The texture of the gels made with fonio showed higher firmness over the evaluated period. These combined results suggest that fonio is a suitable ingredient for gel-like food formulations.


LWT ◽  
2022 ◽  
Vol 153 ◽  
pp. 112457
Author(s):  
Juanjuan Du ◽  
Changyu Zhou ◽  
Qiang Xia ◽  
Ying Wang ◽  
Fang Geng ◽  
...  

Gels ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 10
Author(s):  
Yajun Zhu ◽  
Yufeng Lu ◽  
Tao Ye ◽  
Shaotong Jiang ◽  
Lin Lin ◽  
...  

The effects of different salt additions (1.0%, 1.5%, 2.0%, 2.5%, 3.0%, and 3.5%) on the gelling properties and protein phosphorylation of the mixed gels (MG) formed by silver carp (Hypophthalmichthys molitrix) surimi with 10% crabmeat were investigated. The MG’s breaking force, deformation, gel strength, and water-holding capacity (WHC) increased as the salt concentration increased. The intrinsic fluorescence intensity of the samples initially decreased and then increased, reaching the lowest when the NaCl concentration was 2.5%. The result of SDS–polyacrylamide gel electrophoresis indicated that large aggregates were formed by protein–protein interaction in the MG containing 2.5% or 3.0% NaCl, decreasing the protein band intensity. It was also found that with the addition of NaCl, the phosphorus content initially increased and then decreased, reaching the maximum when the NaCl concentration was 2% or 2.5%, which was similar to the changing trend of actin band intensity reported in the results of Western blot. These results revealed that the amount of salt used had a significant effect on the degree of phosphorylation of the MG protein. The increase in phosphorylation was linked to improved gelling properties, which could lead to new ideas for manufacturing low-salt surimi products in the future.


Author(s):  
Reema B. Gotmare ◽  
R. S. Kushwaha ◽  
Neeraj K. Sharma

Tapentadol Hydrochloride is a Tapentadol is a centrally acting analgesic. It has 33% bioavailability due to its first pass effect and hence possesses problems in the development of oral sustained release formulations. Mucoadhesive thermo reversible in-situ nasal gel of Tapentadol HCl was designed and developed to sustain its release due to the increased nasal residence time of the formulation. Poloxamer 407 (PF 127) was selected as it has excellent thermo sensitive gelling properties. HPMCK4M was added to impart mucoadhesive to the formulation, and PEG 400 was used to enhance the drug release. 32 Factorial designs were employed to assess the effect of concentration of HPMCK4M and PEG 400 on the performance of in-situ nasal gel systematically and to optimize the formulation. An optimized in-situ nasal gel was evaluated for appearance, pH, drug content, gelation temperature, mucoadhesive force, viscosity and ex-vivo permeability of drug through nasal mucosa of a goat. Additionally, this formulation was proved to be safe as histopathological studies revealed no deleterious effect on nasal mucosa of a goat after prolonged exposure of 21 days to the optimized formulation. Thus the release of Tapentadol Hydrochloride can be sustained if formulated in an in-situ nasal gel containing poloxamer 407 to achieve its prolonged action.


Author(s):  
Xiao‐Mei Sha ◽  
Li‐Jun Zhang ◽  
Wen‐Mei Chen ◽  
Guang‐Yao Wang ◽  
Jin‐Lin Li ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
M. Z. I. Mollah ◽  
M S. Rahaman ◽  
M R I. Faruque ◽  
M U. Khandaker ◽  
Hamid Osman ◽  
...  

To estimate the molecular weight (Mw) and gelling properties, a total of 26 alginate samples consisting of control (n = 13) and 15 kGy γ-irradiated (n = 13) samples were characterized through viscometric and gel permeation chromatography (GPC-MALLS) methods. Based on the observations, a remarkable decrease in the intrinsic viscosity of all samples of alginates was evident due to the effects of radiation, with a linear relationship between viscosity and concentration in 0.01 M NaCl solution. The correlation among the Mw, percentage mass recovery, radii of gyration (Rz/Rg), and percentage reduction of Mw assessed by GPC was significant. The Mw decreased dramatically (from 3.1 × 105 to 0.49 × 105 mole/g in sample no. 12) by the effect of radiation with momentous relation to the % reduction of the molecular weight. The highest molecular weight reduction (84%), which is the most sensitive to γ-radiation, and the average reduction rate was ≥50%. The mass recovery was 100% obtained from samples no. 1,3,4,5,7,12, and 13, while the rest of the samples’ recovery rate was significantly higher. The reduction rate of mass molecular weight (Mw) is higher than the average molecular weight (Mv), but they showed a sensitivity towards radiation, consequently their performance are different from each other. The stability test was performed as a critical behaviour in the control, recurrently same as in the irradiated samples. Thus, the sterilization dose of 15 kGy for the Mw distribution, and subsequently for the characterization, was significantly effective.


2021 ◽  
Vol 11 (24) ◽  
pp. 11815
Author(s):  
Meiwen Lv ◽  
Xiukang Wang ◽  
Noman Walayat ◽  
Zhongli Zhang ◽  
Asad Nawaz ◽  
...  

This study aimed to analyze the cryoprotective effect of a ovalbumin (OVA) and β-cyclodextrin (βCD) mixture (3:1, OVA/βCD) on the structure, rheology and gelling properties of myofibrillar proteins (MPs) during 90 days of frozen storage. A mixture of OVA/βCD at different concentrations (0, 2, 4, and 6%) was added to MPs and stored at −18 °C for 90 days. The addition of OVA/βCD significantly decreased the sulfhydryl contents while it increased the surface hydrophobicity, which was closely connected with tertiary structural changes. Circular dichroism analysis showed that the addition of OVA/βCD enhanced the stability of the secondary structure by inhibiting the decline in the α-helix. Rheological properties analysis indicated that 6% OVA/βCD treatment showed better storage modulus (G’) and loss modulus (G”). In addition, treatment of OVA/βCD showed better gel forming properties than the control group (0%), helping to form a homogeneous and denser gel network. The results proved that 6% OVA/βCD could be act as a promising cryoprotectant, which can improve the structure and gel behavior of Culter alburnus MPs during frozen storage. Moreover, OVA/βCD could be a potential alternative to conventional cryoprotectants at the industrial level to increase the economic and commercial values of seafood products.


Sign in / Sign up

Export Citation Format

Share Document