Oriented surface nucleation in inorganic glasses – A review

2020 ◽  
pp. 100758
Author(s):  
Wolfgang Wisniewski ◽  
Christian Rüssel
CrystEngComm ◽  
2018 ◽  
Vol 20 (6) ◽  
pp. 787-795 ◽  
Author(s):  
Wolfgang Wisniewski ◽  
Christian Thieme ◽  
Ralf Müller ◽  
Stefan Reinsch ◽  
Sonja-M. Groß-Barsnick ◽  
...  

Oriented nucleation of walstromite as well as an unknown phase of the composition BaCaSi3O8 is detected after crystallizing a 37BaO·16CaO·47SiO2 (wt%) glass.


2021 ◽  
Vol 562 ◽  
pp. 120661
Author(s):  
C. Tielemann ◽  
R. Busch ◽  
S. Reinsch ◽  
C. Patzig ◽  
T. Höche ◽  
...  

Author(s):  
Zhiyuan Chen ◽  
Christiaan Zeilstra ◽  
Jan van der Stel ◽  
Jilt Sietsma ◽  
Yongxiang Yang

AbstractIn order to understand the pre-reduction behaviour of fine hematite particles in the HIsarna process, change of morphology, phase and crystallography during the reduction were investigated in the high temperature drop tube furnace. Polycrystalline magnetite shell formed within 200 ms during the reduction. The grain size of the magnetite is in the order of magnitude of 10 µm. Lath magnetite was observed in the partly reduced samples. The grain boundary of magnetite was reduced to molten FeO firstly, and then the particle turned to be a droplet. The Johnson-Mehl-Avrami-Kolmogorov model is proposed to describe the kinetics of the reduction process. Both bulk and surface nucleation occurred during the reduction, which leads to the effect of size on the reduction rate in the nucleation and growth process. As a result, the reduction rate constant of hematite particles increases with the increasing particle size until 85 µm. It then decreases with a reciprocal relationship of the particle size above 85 µm.


Langmuir ◽  
2021 ◽  
Author(s):  
Jin Tae Park ◽  
Govind Paneru ◽  
Masao Iwamatsu ◽  
Bruce M. Law ◽  
Hyuk Kyu Pak

2020 ◽  
Vol 981 ◽  
pp. 73-77
Author(s):  
Nurul Ainaa Najihah Busra ◽  
Ramli Arifin ◽  
Sib Krishna Ghoshal ◽  
Rodziah Nazlan

Enhancing the optical performance of rare earth doped binary inorganic glasses is an ever-demanding quest. Samarium (Sm3+) doped zinc tellurite glasses containing Manganese (Mn) nanoparticles (NPs) with composition (59-x)TeO2-20ZnCl2-10ZnO-10Li2O-1Sm2O3-(x)Mn3O4, where x = 0 to 0.06 mol% are prepared by melt quenching technique. The role played by Mn NPs in enhancing the optical behaviors are analyzed and discussed. The XRD patterns confirm the amorphous nature of the glass. The UV-Vis-NIR spectra reveal seven prominent absorption bands of Sm3+ ions. The photoluminescence spectra display four peaks corresponding to 4G5/2→6H5/2, 4G5/2 →6H7/2, 4G5/2→6H9/2 and 4G5/2 →6H11/2 transitions. An enhancement in the luminescence intensity is observed up to 0.05 mol% concentration of NPs and the intensity quenches beyond it. The enhancement is attributed to local electric field effect of NPs in the proximity of Sm3+ ion. Our results on improved optical response via precise control of NPs contents may be useful for the development of solid state lasers and amplifiers.


2008 ◽  
Vol 77 (5) ◽  
Author(s):  
Ómar F. Sigurbjörnsson ◽  
Ruth Signorell

2005 ◽  
Vol 899 ◽  
Author(s):  
Byoung-Min Lee ◽  
Hong Koo Baik ◽  
Takahide Kuranaga ◽  
Shinji Munetoh ◽  
Teruaki Motooka

AbstractMolecular dynamics (MD) simulations of atomistic processes of nucleation and crystal growth of silicon (Si) on SiO2 substrate have been performed using the Tersoff potential based on a combination of Langevin and Newton equations. A new set of potential parameters was used to calculate the interatomic forces of Si and oxygen (O) atoms. It was found that the (111) plane of the Si nuclei formed at the surface was predominantly parallel to the surface of MD cell. The values surface energy for (100), (110), and (111) planes of Si at 77 K were calculated to be 2.27, 1.52, and 1.20 J/m2, respectively. This result suggests that, the nucleation leads to a preferred (111) orientation in the poly-Si thin film at the surface, driven by the lower surface energy.


Sign in / Sign up

Export Citation Format

Share Document