scholarly journals Validation of Melampsora larici-populina reference genes for in planta RT-quantitative PCR expression profiling during time-course infection of poplar leaves

2011 ◽  
Vol 75 (3) ◽  
pp. 106-112 ◽  
Author(s):  
Stéphane Hacquard ◽  
Claire Veneault-Fourrey ◽  
Christine Delaruelle ◽  
Pascal Frey ◽  
Francis Martin ◽  
...  
PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0238157
Author(s):  
Liz M. Florez ◽  
Reiny W. A. Scheper ◽  
Brent M. Fisher ◽  
Paul W. Sutherland ◽  
Matthew D. Templeton ◽  
...  

European canker, caused by the necrotrophic fungal phytopathogen Neonectria ditissima, is one of the most damaging apple diseases worldwide. An understanding of the molecular basis of N. ditissima virulence is currently lacking. Identification of genes with an up-regulation of expression during infection, which are therefore probably involved in virulence, is a first step towards this understanding. Reverse transcription quantitative real-time PCR (RT-qPCR) can be used to identify these candidate virulence genes, but relies on the use of reference genes for relative gene expression data normalisation. However, no report that addresses selecting appropriate fungal reference genes for use in the N. ditissima-apple pathosystem has been published to date. In this study, eight N. ditissima genes were selected as candidate RT-qPCR reference genes for gene expression analysis. A subset of the primers (six) designed to amplify regions from these genes were specific for N. ditissima, failing to amplify PCR products with template from other fungal pathogens present in the apple orchard. The efficiency of amplification of these six primer sets was satisfactory, ranging from 81.8 to 107.53%. Analysis of expression stability when a highly pathogenic N. ditissima isolate was cultured under 10 regimes, using the statistical algorithms geNorm, NormFinder and BestKeeper, indicated that actin and myo-inositol-1-phosphate synthase (mips), or their combination, could be utilised as the most suitable reference genes for normalisation of N. ditissima gene expression. As a test case, these reference genes were used to study expression of three candidate virulence genes during a time course of infection. All three, which shared traits with fungal effector genes, had up-regulated expression in planta compared to in vitro with expression peaking between five and six weeks post inoculation (wpi). Thus, these three genes may well be involved in N. ditissima pathogenicity and are priority candidates for further functional characterization.


2020 ◽  
Author(s):  
Liz M. Florez ◽  
Reiny W. A. Scheper ◽  
Brent M. Fisher ◽  
Paul W. Sutherland ◽  
Matthew D. Templeton ◽  
...  

AbstractEuropean canker, caused by the necrotrophic fungal phytopathogen Neonectria ditissima, is one of the most damaging apple diseases worldwide. An understanding of the molecular basis of N. ditissima virulence is currently lacking. Identification of genes with an up-regulation of expression during infection, which are therefore probably involved in virulence, is a first step towards this understanding. Real-time quantitative reverse transcription PCR (qRT-PCR) can be used to identify these candidate virulence genes, but relies on the use of reference genes for relative gene expression data normalisation. However, no report that addresses selecting appropriate fungal reference genes for use in the N. ditissima-apple pathosystem has been published to date. In this study, eight N. ditissima genes were selected as candidate qRT-PCR reference genes for gene expression analysis. A subset of the primers (six) designed to amplify regions from these genes were specific for N. ditissima, failing to amplify PCR products with template from other fungal pathogens present in the apple orchard. The efficiency of amplification of these six primer sets was satisfactory, ranging from 81.8 to 107.53%. Analysis of expression stability when a highly pathogenic N. ditissima isolate was cultured under 10 regimes, using the statistical algorithms geNorm, NormFinder and BestKeeper, indicated that actin and myo-inositol-1-phosphate synthase (mips), or their combination, could be utilised as the most suitable reference genes for normalisation of N. ditissima gene expression. As a test case, these reference genes were used to study expression of three candidate virulence genes during a time course of infection. All three, which shared traits with fungal effector genes, had up-regulated expression in planta compared to in vitro with expression peaking between five and six weeks post inoculation (wpi). Thus, these three genes may well be involved in N. ditissima pathogenicity and are priority candidates for further functional characterization.


2015 ◽  
Vol 81 (12) ◽  
pp. 4120-4129 ◽  
Author(s):  
Raúl Castanera ◽  
Leticia López-Varas ◽  
Antonio G. Pisabarro ◽  
Lucía Ramírez

ABSTRACTRecently, the lignin-degrading basidiomycetePleurotus ostreatushas become a widely used model organism for fungal genomic and transcriptomic analyses. The increasing interest in this species has led to an increasing number of studies analyzing the transcriptional regulation of multigene families that encode extracellular enzymes. Reverse transcription (RT) followed by real-time PCR is the most suitable technique for analyzing the expression of gene sets under multiple culture conditions. In this work, we tested the suitability of 13 candidate genes for their use as reference genes inP. ostreatustime course cultures for enzyme production. We applied three different statistical algorithms and obtained a combination of stable reference genes for optimal normalization of RT-quantitative PCR assays. This reference index can be used for future transcriptomic analyses and validation of transcriptome sequencing or microarray data. Moreover, we analyzed the expression patterns of a laccase and a manganese peroxidase (lacc10andmnp3, respectively) in lignocellulose and glucose-based media using submerged, semisolid, and solid-state fermentation. By testing different normalization strategies, we demonstrate that the use of nonvalidated reference genes as internal controls leads to biased results and misinterpretations of the biological responses underlying expression changes.


Plant Disease ◽  
2019 ◽  
Vol 103 (10) ◽  
pp. 2577-2586
Author(s):  
Leonor Martins ◽  
Camila Fernandes ◽  
Pedro Albuquerque ◽  
Fernando Tavares

Xanthomonas arboricola pv. juglandis is the etiologic agent of important walnut (Juglans regia L.) diseases, causing severe fruit drop and high economic losses in walnut production regions. Rapid diagnostics and knowledge of bacterial virulence fitness are key to hinder disease progression and apply timely phytosanitary measures. This work describes an X. arboricola pv. juglandis-specific real-time quantitative PCR (qPCR) using X. arboricola pv. juglandis-specific DNA markers to quantify the bacterial load in infected walnut plant tissues. Method validation was achieved using calibration curves obtained with serial dilutions of X. arboricola pv. juglandis chromosomal DNA and standard curves obtained from walnut samples spiked with X. arboricola pv. juglandis cells. High correlations (R2 > 0.990 and > 0.995) and low limits of detection (35 chromosomes/qPCR reaction and 2.7 CFU/qPCR reaction) were obtained for both markers considering the calibration and standard curves, respectively. Assessment of qPCR repeatability, reproducibility, and specificity allowed us to demonstrate the reliability and consistency of the method. Furthermore, in planta quantification of X. arboricola pv. juglandis bacterial load using infected walnut fruit samples showed a higher detection resolution compared with standard PCR detection. By allowing quantification of virulence fitness of distinct X. arboricola pv. juglandis strains in planta, the proposed qPCR method may contribute to assertive risk assessment of walnut diseases caused by X. arboricola pv. juglandis and ultimately help to improve phytosanitary practices.


PLoS ONE ◽  
2015 ◽  
Vol 10 (8) ◽  
pp. e0134890 ◽  
Author(s):  
Raman Bansal ◽  
Priyanka Mittapelly ◽  
Bryan J. Cassone ◽  
Praveen Mamidala ◽  
Margaret G. Redinbaugh ◽  
...  

2010 ◽  
Vol 1 (2) ◽  
pp. 57-92 ◽  
Author(s):  
Jian Chen ◽  
Sandy Williams ◽  
Samantha Ho ◽  
Howard Loraine ◽  
Deborah Hagan ◽  
...  

2016 ◽  
Vol 16 (1) ◽  
pp. 50 ◽  
Author(s):  
Florence Piron Prunier ◽  
Mathieu Chouteau ◽  
Annabel Whibley ◽  
Mathieu Joron ◽  
Violaine Llaurens

Sign in / Sign up

Export Citation Format

Share Document