The splice variant Ntr encoded by the tobacco resistance gene N has a role for negative regulation of antiviral defense responses

2013 ◽  
Vol 84 ◽  
pp. 92-98 ◽  
Author(s):  
Nobumitsu Sasaki ◽  
Masumi Takaoka ◽  
Shobu Sasaki ◽  
Katsuyuki Hirai ◽  
Tetsuo Meshi ◽  
...  
2018 ◽  
Vol 84 (2) ◽  
pp. 73-84
Author(s):  
Kazuo Taku ◽  
Nobumitsu Sasaki ◽  
Kenta Matsuzawa ◽  
Atsushi Okamura-Mukai ◽  
Hiroshi Nyunoya

2001 ◽  
Vol 14 (2) ◽  
pp. 181-188 ◽  
Author(s):  
Michael J. Axtell ◽  
Timothy W. McNellis ◽  
Mary Beth Mudgett ◽  
Caroline S. Hsu ◽  
Brian J. Staskawicz

Plants have evolved a large number of disease resistance genes that encode proteins containing conserved structural motifs that function to recognize pathogen signals and to initiate defense responses. The Arabidopsis RPS2 gene encodes a protein representative of the nucleotide-binding site-leucine-rich repeat (NBS-LRR) class of plant resistance proteins. RPS2 specifically recognizes Pseudomonas syringae pv. tomato strains expressing the avrRpt2 gene and initiates defense responses to bacteria carrying avrRpt2, including a hypersensitive cell death response (HR). We present an in planta mutagenesis experiment that resulted in the isolation of a series of rps2 and avrRpt2 alleles that disrupt the RPS2-avrRpt2 gene-for-gene interaction. Seven novel avrRpt2 alleles incapable of eliciting an RPS2-dependent HR all encode proteins with lesions in the C-terminal portion of AvrRpt2 previously shown to be sufficient for RPS2 recognition. Ten novel rps2 alleles were characterized with mutations in the NBS and the LRR. Several of these alleles code for point mutations in motifs that are conserved among NBS-LRR resistance genes, including the third LRR, which suggests the importance of these motifs for resistance gene function.


PLoS ONE ◽  
2015 ◽  
Vol 10 (9) ◽  
pp. e0137360 ◽  
Author(s):  
Hanming Hong ◽  
Yanyan Liu ◽  
Haitao Zhang ◽  
Jinghua Xiao ◽  
Xianghua Li ◽  
...  

1998 ◽  
Vol 11 (12) ◽  
pp. 1196-1206 ◽  
Author(s):  
Jens Boch ◽  
Michelle L. Verbsky ◽  
Tara L. Robertson ◽  
John C. Larkin ◽  
Barbara N. Kunkel

In resistant plants, pathogen attack often leads to rapid activation of defense responses that limit multiplication and spread of the pathogen. To investigate the signaling mechanisms underlying this process, we carried out a screen for mutants in the signaling pathway governing resistance in Arabidopsis thaliana to the bacterial pathogen Pseudomonas syringae. This involved screening for suppressor mutations that restored resistance to a susceptible line carrying a mutation in the RPS2 resistance gene. A mutant that conferred resistance by activating defense responses in the absence of pathogens was isolated. This mutant, which carries a mutation at the CPR5 locus and was thus designated cpr5-2, exhibited resistance to P. syringae, spontaneous development of necrotic lesions, elevated PR gene expression in the absence of pathogens, and abnormal trichomes. Resistance gene-mediated defenses, including the hypersensitive response, restriction of pathogen growth, and induction of defense-related gene expression, were functional in cpr5-2 mutant plants. Additionally, in cpr5-2 plants RPS2-mediated induction of PR-1 expression was enhanced, whereas RPM1-mediated induction of ELI3 was not. These findings suggest that CPR5 encodes a negative regulator of the RPS2 signal transduc-tion pathway.


2004 ◽  
Vol 17 (2) ◽  
pp. 224-232 ◽  
Author(s):  
Donna Frost ◽  
Heather Way ◽  
Paul Howles ◽  
Joanne Luck ◽  
John Manners ◽  
...  

Tobacco was transformed with three different alleles (L2, L6, and L10) of the flax rust resistance gene L, a member of the toll interleukin-1 receptor, nucleotide-binding site, leucine-rich repeat (TIR-NBS-LRR) class of plant disease resistance genes. L6 transgenics had a stunted phenotype, expressed several defense response genes constitutively, and had increased resistance to the fungus Cercospora nicotianae and the oomycete Phytophthora parasitica pv. nicotianae. L2 and L10 transgenics, with one exception for L10, did not express these phenotypes, indicating that the activation of tobacco defense responses is L6 allele-specific. The phenotype of the exceptional L10 transgenic plant was associated with the presence of a truncated L10 gene resulting from an aberrant T-DNA integration. The truncated gene consisted of the promoter, the complete TIR region, and 39 codons of the NBS domain fused in-frame to a tobacco retrotransposon-like sequence. A similar truncated L10 gene, constructed in vitro, was transiently expressed in tobacco leaves and gave rise to a strong localized necrotic reaction. Together, these results suggest that defense signaling properties of resistance genes can be expressed in an allele-specific and pathogen-independent manner when transferred between plant genera.


2005 ◽  
Author(s):  
◽  
Xue-Cheng Zhang

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT AUTHOR'S REQUEST.] The Arabidopsis disease resistance gene RPS4 activates defense responses to the bacterial pathogen Pseudomonas syringae pv. tomato strain DC3000 expressing avrRps4 in a gene-for-gene specific manner. Like other plant TIRNBS-LRR resistance genes, RPS4 produces multiple transcripts via alternative splicing. Alternative RPS4 transcripts are predominantly generated by intron retention. First, the biological significance of these alternative transcripts in disease resistance was analyzed. It was shown that alternative RPS4 transcripts are required for complete function and that RPS4-mediated resistance requires the combined presence of multiple transcripts encoding both full-length and truncated open reading frames. Interestingly, the dominant alternative transcript is the only alternative transcript whose abundance relative to the regular transcript undergoes dramatic and dynamic changes during the resistance response. Furthermore, RPS4 expression is induced by AvrRps4 and an unrelated effector, HopPsyA, in an EDS1-dependent manner. These data suggest that rapid gene induction and changes in transcript ratios might be under coordinated regulation that are important to fine-tune RPS4-mediated resistance. Our previous data showed that removal of one intron abolished RPS4 function. However, no significant changes of transcript ratios in intron-deficient transgenic rps4-1 plants were observed compared to rps4-1 expressing a wild type genomic transgene, suggesting that the artificial removal of one intron has no effect on the splicing frequency of other introns. In consistent with our previous data, analyses on secondary RNA structures suggest that alternative RPS4 transcripts function at protein level. Of the three expected truncated RPS4 proteins, only one was detected and stable in vivo, indicating that RPS4 protein stability or activity is regulated. In summary, RPS4 function is regulated at multiple levels including gene expression, alternative splicing and protein stability or activity.


1996 ◽  
Vol 8 (10) ◽  
pp. 1773 ◽  
Author(s):  
Kim E. Hammond-Kosack ◽  
Jonathan D. G. Jones

Sign in / Sign up

Export Citation Format

Share Document