In vivo electroporation of the central nervous system: A non-viral approach for targeted gene delivery

2010 ◽  
Vol 92 (3) ◽  
pp. 227-244 ◽  
Author(s):  
Jochen De Vry ◽  
Pilar Martínez-Martínez ◽  
Mario Losen ◽  
Yasin Temel ◽  
Thomas Steckler ◽  
...  
2018 ◽  
Author(s):  
Subashika Govindan ◽  
Polina Oberst ◽  
Denis Jabaudon

AbstractThis protocol describes a fluorescence birthdating technique to label, track and isolate isochronic cohorts of newborn cells in the central nervous system in vivo. Injection of carboxyfluorescein esters into the cerebral ventricle allows pulse-labeling of M-phase progenitors in touch with the ventricle and their progeny across the central nervous system, a procedure we termed FlashTag. Labeled cells can be imaged ex vivo or in fixed tissue, targeted for electrophysiological experiments, or isolated using Fluorescence-Activated Cell Sorting (FACS) for cell culture or (single-cell) RNA-sequencing. The dye is retained for several weeks, allowing labeled cells to be identified postnatally. This protocol describes the labeling procedure using in utero injection, the isolation of live cells using FACS, as well as the processing of labeled tissue using immunohistochemistry.


2001 ◽  
Vol 75 (9) ◽  
pp. 4343-4356 ◽  
Author(s):  
Caroline E. Lilley ◽  
Filitsa Groutsi ◽  
ZiQun Han ◽  
James A. Palmer ◽  
Patrick N. Anderson ◽  
...  

ABSTRACT Herpes simplex virus (HSV) has several potential advantages as a vector for delivering genes to the nervous system. The virus naturally infects and remains latent in neurons and has evolved the ability of highly efficient retrograde transport from the site of infection at the periphery to the site of latency in the spinal ganglia. HSV is a large virus, potentially allowing the insertion of multiple or very large transgenes. Furthermore, HSV does not integrate into the host chromosome, removing any potential for insertional activation or inactivation of cellular genes. However, the development of HSV vectors for the central nervous system that exploit these properties has been problematical. This has mainly been due to either vector toxicity or an inability to maintain transgene expression. Here we report the development of highly disabled versions of HSV-1 deleted for ICP27, ICP4, and ICP34.5/open reading frame P and with an inactivating mutation in VP16. These viruses express only minimal levels of any of the immediate-early genes in noncomplementing cells. Transgene expression is maintained for extended periods with promoter systems containing elements from the HSV latency-associated transcript promoter (J. A. Palmer et al., J. Virol. 74:5604–5618, 2000). Unlike less-disabled viruses, these vectors allow highly effective gene delivery both to neurons in culture and to the central nervous system in vivo. Gene delivery in vivo is further enhanced by the retrograde transport capabilities of HSV. Here the vector is efficiently transported from the site of inoculation to connected sites within the nervous system. This is demonstrated by gene delivery to both the striatum and substantia nigra following striatal inoculation; to the spinal cord, spinal ganglia, and brainstem following injection into the spinal cord; and to retinal ganglion neurons following injection into the superior colliculus and thalamus.


Author(s):  
Konstantin Gulyabin

Mills' syndrome is a rare neurological disorder. Its nosological nature is currently not completely determined. Nevertheless, Mills' syndrome is considered to be a rare variant of the degenerative pathology of the central nervous system – a variant of focal cortical atrophy. The true prevalence of this pathology is unknown, since this condition is more often of a syndrome type, observed in the clinical picture of a number of neurological diseases (primary lateral sclerosis, frontotemporal dementia, etc.) and is less common in isolated form.


Sign in / Sign up

Export Citation Format

Share Document