scholarly journals Highly stretchable and sensitive strain sensor based on silver nanowires/carbon nanotubes on hair band for human motion detection

Author(s):  
Yanqiang Cao ◽  
Tiancheng Lai ◽  
Furui Teng ◽  
Chang Liu ◽  
Aidong Li
2020 ◽  
Vol 305 (3) ◽  
pp. 1900813 ◽  
Author(s):  
Baowei Cheng ◽  
Shulong Chang ◽  
Hui Li ◽  
Yunxing Li ◽  
Weixia Shen ◽  
...  

Sensors ◽  
2020 ◽  
Vol 20 (4) ◽  
pp. 1154 ◽  
Author(s):  
Peng Zhang ◽  
Yucheng Chen ◽  
Yuxia Li ◽  
Yao Zhang ◽  
Jian Zhang ◽  
...  

High-performance flexible strain sensors are playing an increasingly important role in wearable electronics, such as human motion detection and health monitoring, with broad application prospects. This study developed a flexible resistance strain sensor with a porous structure composed of carbon black and multi-walled carbon nanotubes. A simple and low-cost spraying method for the surface of a porous polydimethylsiloxane substrate was used to form a layer of synergized conductive networks built by carbon black and multi-walled carbon nanotubes. By combining the advantages of the synergetic effects of mixed carbon black and carbon nanotubes and their porous polydimethylsiloxane structure, the performance of the sensor was improved. The results show that the sensor has a high sensitivity (GF) (up to 61.82), a wide strain range (0%–130%), a good linearity, and a high stability. Based on the excellent performance of the sensor, the flexible strain designed sensor was installed successfully on different joints of the human body, allowing for the monitoring of human movement and human respiratory changes. These results indicate that the sensor has promising potential for applications in human motion monitoring and physiological activity monitoring.


2016 ◽  
Vol 8 (37) ◽  
pp. 24837-24843 ◽  
Author(s):  
Zifeng Wang ◽  
Yan Huang ◽  
Jinfeng Sun ◽  
Yang Huang ◽  
Hong Hu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document