Feasibility study of the application of exotic pin for tight-lattice fuel assembly

2011 ◽  
Vol 53 (4) ◽  
pp. 320-329 ◽  
Author(s):  
Azizul Khakim ◽  
Hisashi Ninokata
Author(s):  
Chi Young Lee ◽  
Chang Hwan Shin ◽  
Ju Yong Park ◽  
Dong Seok Oh ◽  
Tae Hyun Chun ◽  
...  

In order to ensure the compactness and high-power density of a nuclear power reactor, the research on tight-lattice fuel bundle, with a narrow gap distance between fuels, has been highlighted. Recently, KAERI (Korea Atomic Energy Research Institute) has been developing dual-cooled annular fuel to increase a significant amount of the reactor power in OPR1000 (Optimized Power Reactor), a PWR (Pressurized Water Reactor) optimized in the Republic of Korea. The dual-cooled annular fuel is configured to allow a coolant flow through the inner channel as well as the outer channel. To introduce the dual-cooled annular fuel to OPR1000 is aiming at increasing the reactor power by 20% and reducing the fuel-pellet temperature by 30%, as compared to the cylindrical solid fuel, without a change in reactor components. In such a case, due to larger outer diameter of a dual-cooled annular fuel, the dual-cooled annular fuel assembly exhibits a smaller P/D (Pitch-to-Diameter ratio) than the conventional cylindrical solid fuel assembly. In other words, the dual-cooled annular fuel array becomes the tight-lattice fuel bundle configuration, and such a change in P/D can significantly affect the thermal-hydraulic characteristics in nuclear reactor core. In this paper, the pressure drop and flow pulsation in tight-lattice rod bundle were investigated. As the test sections, the tight-lattice rod bundle of P/D = 1.08 was prepared with the regular rod bundle of P/D = 1.35. The friction factors in P/D = 1.08 appeared smaller than those in P/D = 1.35. For P/D = 1.08, the twist-vane spacer grid became the larger pressure loss coefficients than the plain spacer grid. In P/D = 1.08, the flow pulsation, quasi-periodic oscillating flow motion, was visualized successfully by PIV (Particle Image Velocimetry) and MIR (Matching Index of Refraction) techniques. The peak frequency and power spectral density of flow pulsation increased with increasing the Reynolds number. Our belief is that this work can contribute to a design of nuclear reactor with tight-lattice fuel bundle for compactness and power-uprate and a further understanding of the coolant mixing phenomena in a nuclear fuel assembly.


Author(s):  
Takeharu Misawa ◽  
Akira Ohnuki ◽  
Kozo Katsuyama ◽  
Yasuo Nakamura ◽  
Hajime Akimoto

2021 ◽  
Vol 9 ◽  
Author(s):  
Pan Wu ◽  
Lixin Zhang ◽  
Jianqiang Shan ◽  
Bo Zhang

Dual cooled annular fuel is a novel fuel design, which has the potential to improve the reactor power density while maintaining or improving its safety margin. The effects of tight-lattice geometry, fuel burnup, fuel expansion, coolant channel blockage on the thermal hydraulic performance of annular fuel is studied to illustrate its special features in this paper. A sub-channel analysis code named NACAF, which includes empirical constitutive models in consideration of tight-lattice effects on prediction of pressure drop, critical heat flux and turbulent mixing, channel blockage model, heat conduction model for dual surface cooling condition, coolant flowrate distribution between inner and outer channel, is developed for annular fuel assembly or core analysis based on homogenous fluid model. Validation work is carried out with comparing NACAF results with analytical solutions, as well as numerical results of existing sub-channel code for annular fuel, such as VIPRE-01 and TAFIX. Comparison results demonstrates NACAF’s prediction error is acceptable and it has the ability to simulate thermal hydraulic performance of annular fuels or annular fuel bundles. Based on the developed and verified NACAF, the special thermal hydraulic phenomena of annular fuel are studied to clarify the features of annular fuel.


Author(s):  
Yuuichi Tooya ◽  
Tadahiro Washiya ◽  
Kenji Koizumi ◽  
Shinichi Morita

Japan Atomic Energy Agency (JAEA) has been leading feasibility study on commercialized fast reactor cycle systems in Japan. In this study, we have proposed a new disassembly technology by mechanical disassembly system that consists of a mechanical cutting step and a wrapper tube pulling step. In the mechanical disassembly system, high durability mechanical tool grinds the wrapper tube (Slit-cut (S/C) operation in circle direction), and then the wrapper tube is pulled out and removed from the fuel assembly. Then the fuel pins are cut (Crop-cut (C/C) operation at entrance nozzle side) and the entrance nozzle is removed. The fuel pins are transported to the shearing device in next process. The Fundamental tests were carried out with simulated FBR fuel pins and wrapper tube, and cutting performance and wrapper tube pulling performance has been confirmed by engineering scale. As results, we established an efficient disassembly procedure and the fundamental design of mechanical disassembly system.


Sign in / Sign up

Export Citation Format

Share Document