Pressure Drop and Flow Pulsation in Tight-Lattice Rod Bundle

Author(s):  
Chi Young Lee ◽  
Chang Hwan Shin ◽  
Ju Yong Park ◽  
Dong Seok Oh ◽  
Tae Hyun Chun ◽  
...  

In order to ensure the compactness and high-power density of a nuclear power reactor, the research on tight-lattice fuel bundle, with a narrow gap distance between fuels, has been highlighted. Recently, KAERI (Korea Atomic Energy Research Institute) has been developing dual-cooled annular fuel to increase a significant amount of the reactor power in OPR1000 (Optimized Power Reactor), a PWR (Pressurized Water Reactor) optimized in the Republic of Korea. The dual-cooled annular fuel is configured to allow a coolant flow through the inner channel as well as the outer channel. To introduce the dual-cooled annular fuel to OPR1000 is aiming at increasing the reactor power by 20% and reducing the fuel-pellet temperature by 30%, as compared to the cylindrical solid fuel, without a change in reactor components. In such a case, due to larger outer diameter of a dual-cooled annular fuel, the dual-cooled annular fuel assembly exhibits a smaller P/D (Pitch-to-Diameter ratio) than the conventional cylindrical solid fuel assembly. In other words, the dual-cooled annular fuel array becomes the tight-lattice fuel bundle configuration, and such a change in P/D can significantly affect the thermal-hydraulic characteristics in nuclear reactor core. In this paper, the pressure drop and flow pulsation in tight-lattice rod bundle were investigated. As the test sections, the tight-lattice rod bundle of P/D = 1.08 was prepared with the regular rod bundle of P/D = 1.35. The friction factors in P/D = 1.08 appeared smaller than those in P/D = 1.35. For P/D = 1.08, the twist-vane spacer grid became the larger pressure loss coefficients than the plain spacer grid. In P/D = 1.08, the flow pulsation, quasi-periodic oscillating flow motion, was visualized successfully by PIV (Particle Image Velocimetry) and MIR (Matching Index of Refraction) techniques. The peak frequency and power spectral density of flow pulsation increased with increasing the Reynolds number. Our belief is that this work can contribute to a design of nuclear reactor with tight-lattice fuel bundle for compactness and power-uprate and a further understanding of the coolant mixing phenomena in a nuclear fuel assembly.

2004 ◽  
Vol 2004.3 (0) ◽  
pp. 229-230
Author(s):  
Hidesada Tamai ◽  
Masatoshi Kureta ◽  
Akira Ohnuki ◽  
Hajime Akimoto

2006 ◽  
Vol 72 (715) ◽  
pp. 701-708 ◽  
Author(s):  
Shinichi MOROOKA ◽  
Yasushi YAMAMOTO ◽  
Kenetsu SHIRAKAWA

2003 ◽  
Vol 2 (3) ◽  
pp. 301-306 ◽  
Author(s):  
Shinichi MOROOKA ◽  
Yasushi YAMAMOTO ◽  
Kenetsu SHIRAKAWA

2017 ◽  
Vol 67 (1) ◽  
pp. 69-76
Author(s):  
Jakub Jakubec ◽  
Juraj Paulech ◽  
Vladimír Kutiš ◽  
Gabriel Gálik

AbstractThe paper deals with CFD modelling and simulation of coolant flow within the nuclear reactor VVER 440 fuel assembly. The influence of coolant flow in bypass on the temperature distribution at the outlet of the fuel assembly and pressure drop was investigated. Only steady-state analyses were performed. Boundary conditions are based on operating conditions. ANSYS CFX is chosen as the main CFD software tool, where all analyses are performed.


Author(s):  
P C Chiu ◽  
E H K Fung

A triple heat exchanger, so called because there are three heat exchange processes taking place in it, was built to simulate the system behaviour of a nuclear reactor power plant or a solar heating plant which is characterized by the two circulating loops of the fluid flow. Experiments were carried out to study the temperature transients under disturbances in secondary fluid inlet temperature and power output from immersion heaters. Numerical results were obtained from the weighted residual formulation of the proposed dynamic model and they were shown to be in general agreement with the two sets of experimental responses.


Author(s):  
Hiroyuki Yoshida ◽  
Takeharu Misawa ◽  
Kazuyuki Takase

Two-fluid model can simulate two phase flow less computational cost than inter-face tracking method and particle interaction method. Therefore, two-fluid model is useful for thermal hydraulic analysis in large-scale domain such as a rod bundle. Japan Atomic Energy Agency (JAEA) develops three dimensional two-fluid model analysis code ACE-3D, which adopts boundary fitted coordinate system in order to simulate complex shape channel flow. In this paper, boiling two-phase flow analysis in a tight lattice rod bundle is performed by ACE-3D code. The parallel computation using 126CPUs is applied to this analysis. In the results, the void fraction, which distributes in outermost region of rod bundle, is lower than that in center region of rod bundle. At height z = 0.5 m, void fraction in the gap region is higher in comparison with that in center region of the subchannel. However, at height of z = 1.1m, higher void fraction distribution exists in center region of the subchannel in comparison with the gap region. The tendency of void fraction to concentrate in the gap region at vicinity of boiling starting point, and to move into subchannel as water goes through rod bundle, is qualitatively agreement with the measurement results by neutron radiography. To evaluate effects of two-phase flow model used in ACE-3D code, numerical simulation of boiling two-phase in tight lattice rod bundle with no lift force model (neglecting lift force acting on bubbles) is also performed. From the comparison of numerical results, it is concluded that the effects of lift force model are not so large on overall void fraction distribution in tight lattice rod bundle. However, higher void fraction distribution in center region of the subchannel was not observed in this simulation. It is concluded that the lift force model is important for local void fraction distribution in rod bundles.


Sign in / Sign up

Export Citation Format

Share Document