Severe accident analysis of the Qinshan Nuclear Power Plant and evaluation of boundary conditions for ex-vessel heat transfer

2022 ◽  
Vol 143 ◽  
pp. 104032
Author(s):  
Nasir Hayat Hengra ◽  
Muhammad Ilyas ◽  
Mansoor Hameed Inayat
Author(s):  
Atsuo Takahashi ◽  
Marco Pellegrini ◽  
Hideo Mizouchi ◽  
Hiroaki Suzuki ◽  
Masanori Naitoh

The transient process of the accident at the Fukushima Daiichi Nuclear Power Plant Unit 2 was analyzed by the severe accident analysis code, SAMPSON. One of the characteristic phenomena in Unit 2 is that the reactor core isolation cooling system (RCIC) worked for an unexpectedly long time (about 70 h) without batteries and consequently core damage was delayed when compared to Units 1 and 3. The mechanism of how the RCIC worked such a long time is thought to be due to balance between injected water from the RCIC pump and the supplied mixture of steam and water sent to the RCIC turbine. To confirm the RCIC working conditions and reproduce the measured plant properties, such as pressure and water level in the pressure vessel, we introduced a two-phase turbine driven pump model into SAMPSON. In the model, mass flow rate of water injected by the RCIC was calculated through turbine efficiency degradation the originated from the mixture of steam and water flowing to the RCIC turbine. To reproduce the drywell pressure, we assumed that the torus room was flooded by the tsunami and heat was removed from the suppression chamber to the sea water. Although uncertainties, mainly regarding behavior of debris, still remain because of unknown boundary conditions, such as alternative water injection by fire trucks, simulation results by SAMPSON agreed well with the measured values for several days after the scram.


Author(s):  
Toru Yamamoto

Based on radioactivity measurement of soil samples in the site of Fukushima Dai-Ichi Nuclear Power Station, radioactivity of Sr, Nb, Mo, Tc, Ru, Ag, Te, I, Cs, Ba, La, Pu, Am, and Cm isotopes were compiled as radioactivity ratios to 137Cs. By exponentially fitting or averaging, the radioactivity ratios at the core shutdown were estimated. They were divided by those of the fuel of the core at the shutdown to obtain a deposited radioactivity fractions of the nuclides as relative values to 137Cs, which also correspond to deposition fractions of the elements as relative values to Cs. They were estimated to be orders of 10−4 to 10−3 for Sr, 10−4 for Nb, 10−2 to 10−1 for Mo, 10−1 for Ag, 10−1 to 100 for Te, 100 for I, 10−3 for Ba, 10−6 to 10−5 for Pu, 10−6 to 10−5 for Am, and 10−6 for Cm. The observed radioactivity ratios to 137Cs were compared with those obtained by severe accident analysis to assess the validation of the analysis.


Author(s):  
Eveliina Takasuo ◽  
Ville Hovi ◽  
Mikko Ilvonen ◽  
Stefan Holmström

A porous particle bed consisting of core debris may be formed as a result of a core melt accident in a nuclear power plant. The coolability of conical (heap-like) and cylindrical (evenly-distributed) ex-vessel debris beds have been investigated in the COOLOCE experiments at VTT. The experiments have been modeled by using the MEWA severe accident analysis code. The main objectives of the modeling were (1) to validate the simulation results against the experiments by comparing the dryout power density predicted by the code to the experimental results and (2) to evaluate the effect of geometry on the coolability by examining the flow field and the development of dryout in the two geometries. In addition to the MEWA simulations, 3D demonstration calculations of the particle bed dryout process have been performed using the in-house code PORFLO. It was found that the simulation and experimental results are in a relatively good agreement. The results suggest that the coolability of the conical debris bed is poorer than that of the cylindrical bed due to the greater height of the conical configuration.


2018 ◽  
Vol 4 (3) ◽  
Author(s):  
Kevin Fernández-Cosials ◽  
Gonzalo Jiménez ◽  
César Serrano ◽  
Luisa Ibáñez ◽  
Ángel Peinado

During a severe accident (SA) in a nuclear power plant (NPP), there are several challenges that need to be faced. To coup with a containment overpressure, the venting action will lower the pressure but it will release radioactivity to the environment. In order to reduce the radioactivity released, a filtered containment venting system (FCVS) can be used to retain iodine and aerosols radioactive releases coming from the containment atmosphere. However, during a SA, large quantities of hydrogen can also be generated. Hydrogen reacts violently with oxygen and its combustion could impair systems, components, or structures. For this reason, to protect the integrity of the FCVS against hydrogen explosions, an inertization system is found necessary. This system should create an inert atmosphere previous to any containment venting that impedes the contact of hydrogen and oxygen. In this paper, the inertization system for Cofrentes NPP is presented. It consists of a nitrogen injection located in three different points. A computational model of the FCVS as well as the inertization system has been created. The results show that if the nitrogen sweeps and the containment venting are properly synchronized, the hydrogen risk could be reduced to a minimum and therefore, the integrity of the FCVS would be preserved.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Kwame Gyamfi ◽  
Sylvester Attakorah Birikorang ◽  
Emmanuel Ampomah-Amoako ◽  
John Justice Fletcher

Abstract Atmospheric dispersion modeling and radiation dose calculation have been performed for a generic 1000 MW water-water energy reactor (VVER-1000) assuming a hypothetical loss of coolant accident (LOCA). Atmospheric dispersion code, International Radiological Assessment System (InterRAS), was employed to estimate the radiological consequences of a severe accident at a proposed nuclear power plant (NPP) site. The total effective dose equivalent (TEDE) and the ground deposition were calculated for various atmospheric stability classes, A to F, with the site-specific averaged meteorological conditions. From the analysis, 3.7×10−1 Sv was estimated as the maximum TEDE corresponding to a downwind distance of 0.1 km within the dominating atmospheric stability class (class A) of the proposed site. The intervention distance for evacuation (50 mSv) and sheltering (10 mSv) were estimated for different stability classes at different distances. The intervention area for evacuation ended at 0.5 km and that for sheltering at 1.5 km. The results from the study show that designated area for public occupancy will not be affected since the estimated doses were below the annual regulatory limits of 1 mSv.


Sign in / Sign up

Export Citation Format

Share Document