Basin-scale population genetic structure of the planktonic copepod Calanus finmarchicus in the North Atlantic Ocean

2010 ◽  
Vol 87 (1-4) ◽  
pp. 175-185 ◽  
Author(s):  
Ebru Unal ◽  
Ann Bucklin
PLoS ONE ◽  
2014 ◽  
Vol 9 (2) ◽  
pp. e88589 ◽  
Author(s):  
Petra H. Lenz ◽  
Vittoria Roncalli ◽  
R. Patrick Hassett ◽  
Le-Shin Wu ◽  
Matthew C. Cieslak ◽  
...  

2020 ◽  
Author(s):  
Andrew Delman ◽  
Tong Lee

Abstract. The meridional heat transport (MHT) in the North Atlantic is critically important to climate variability and the global overturning circulation. A wide range of ocean processes contribute to North Atlantic MHT, ranging from basin-scale overturning and gyre motions to mesoscale instabilities (such as eddies). However, previous analyses of eddy MHT in the region have mostly focused on the contributions of time-variable velocity and temperature, rather than considering the spatial scales that are more fundamental to the physics of ocean eddies. In this study, a zonal spatial-scale decomposition separates large-scale from mesoscale velocity and temperature contributions to MHT, in order to characterize the physical processes driving MHT. Using this approach, we found that the mesoscale contributions to the time mean and interannual/decadal (ID) variability of MHT in the North Atlantic Ocean are larger than large-scale horizontal contributions, though smaller than the overturning contributions. Considering the 40° N transect as a case study, large-scale ID variability is mostly generated in the deeper part of the thermocline, while mesoscale ID variability has shallower origins. At this latitude, most ID MHT variability associated with mesoscales originates in two regions: a western boundary region (70°–60° W) associated with 1–4 year interannual variations, and an interior region (50°–35° W) associated with decadal variations. Surface eddy kinetic energy is not a reliable indicator of high MHT episodes, but the large-scale meridional temperature gradient is an important factor, by influencing the local temperature variance as well as the local correlation of velocity and temperature. Most of the mesoscale contribution to MHT at 40° N is associated with transient and propagating processes, but stationary mesoscale dynamics contribute substantially to MHT south of the Gulf Stream separation, highlighting the differences between the temporal and spatial decomposition of meridional temperature fluxes.


2014 ◽  
Vol 7 (1) ◽  
pp. 225-242
Author(s):  
W. Melle ◽  
J. A. Runge ◽  
E. Head ◽  
S. Plourde ◽  
C. Castellani ◽  
...  

Abstract. Here we present a new, pan-Atlantic compilation of data on key mesozooplankton species, including the possibly most important copepod, Calanus finmarchicus. Distributional data of ten representative zooplankton taxa, from recent (2000–2009) Continuous Plankton Recorder data, are presented, along with basin-scale data of the phytoplankton colour index. Then we present a compilation of data on C. finmarchicus including observations of abundance, demography, egg production and female size with accompanying data on temperature and chlorophyll. This is a contribution by Canadian, European and US scientists and their institutions. http://doi.pangaea.de/10.1594/PANGAEA.820732, http://doi.pangaea.de/10.1594/PANGAEA.824423, http://doi.pangaea.de/10.1594/PANGAEA.828393.


Science ◽  
2009 ◽  
Vol 324 (5928) ◽  
pp. 791-793 ◽  
Author(s):  
P. Koeller ◽  
C. Fuentes-Yaco ◽  
T. Platt ◽  
S. Sathyendranath ◽  
A. Richards ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document