The effect of gamma radiation on the properties of polypropylene blends with styrene–butadiene–styrene copolymers

2004 ◽  
Vol 85 (2) ◽  
pp. 741-750 ◽  
Author(s):  
R Perera ◽  
C Albano ◽  
J González ◽  
P Silva ◽  
M Ichazo
1967 ◽  
Vol 40 (4) ◽  
pp. 1183-1199 ◽  
Author(s):  
C. W. Childers ◽  
G. Kraus

Abstract In butadiene styrene copolymers containing long block sequences chain segments associate with like segments to form a two phase structure. Properties of such polymers are dependent not only on composition and molecular weight but also on block sequence along the chain. Polymers containing two or more polystyrene blocks per molecule form networks and exhibit elastomeric properties in the uncured state resembling those of filler reinforced vulcanizates. This behavior is shown both by linear styrene-butadiene-styrene elastomers and multichain block copolymers branched in the polybutadiene blocks. A prominent loss tangent peak was observed around —40° C for the multichain polymers. Stress strain following prestretching and stress relaxation measurements indicate some shifting of polystyrene associations during stretching. Tensile strength is reduced by increasing temperature and addition of plasticizers. Reinforcement by polystyrene domains in vulcanized block copolymers is evident from tensile strength, dynamic modulus, and swelling measurements, but decreases with increased crosslinking. The number of styrene sequences in the primary molecules is less important after vulcanization as crosslinking destroys the individuality of the original polymer chains.


Author(s):  
Yuliya A. Urcheva ◽  
◽  
Vladislav A. Kholodnov ◽  
Alexander M. Syroezhko ◽  
Valentin V. Vasiliev ◽  
...  

The influence of structure of styrene-butadiene-styrene rubber on the quality characteristics of polymer-modified bitumen – produced on its basis – was identified. A program for a compromise assessment of the preference of such polymers using fuzzy sets was developed. A mathematical model was obtained that is recommended for use to optimize production and reduce costs in the industrial production of polymer-modified bitumen.


2006 ◽  
Vol 79 (6) ◽  
pp. 1021-1024 ◽  
Author(s):  
O. V. Luksha ◽  
O. N. Opanasenko ◽  
N. P. Krut’ko ◽  
Yu. V. Loboda

2017 ◽  
Vol 90 (3) ◽  
pp. 550-561 ◽  
Author(s):  
Prithwiraj Mandal ◽  
Siva Ponnupandian ◽  
Soumyadip Choudhury ◽  
Nikhil K. Singha

ABSTRACT Thiol-ene modification of high vinyl content thermoplastic elastomeric styrene butadiene styrene (SBS) block copolymer (BCP) was carried out using different thiolating agents in toluene at 70 °C. 1H NMR analysis confirmed the participation of vinyl double bond in the thiol-ene modification reaction of SBS. Surface morphology of the block copolymers evaluated by atomic force microscopy analysis showed higher roughness after the thiol-ene reaction. The thiol-modified SBS block copolymer showed better adhesion strength and oil resistance properties than the pristine SBS.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2249
Author(s):  
Bei Chen ◽  
Fuqiang Dong ◽  
Xin Yu ◽  
Changjiang Zheng

In order to solve the problems caused by asphalt diseases and prolong the life cycle of asphalt pavement, many studies on the properties of modified asphalt have been conducted, especially polyurethane (PU) modified asphalt. This study is to replace part of the styrene-butadiene-styrene (SBS) modifier with waste polyurethane (WP), for preparing WP/SBS composite modified asphalt, as well as exploring its properties and microstructure. On this basis, this paper studied the basic performance of WP/SBS composite modified asphalt with a conventional performance test, to analyze the high- and low-temperature rheological properties, permanent deformation resistance and storage stability of WP/SBS composite modified asphalt by dynamic shear rheometer (DSR) and bending beam rheometer (BBR) tests. The microstructure of WP/SBS composite modified asphalt was also observed by fluorescence microscope (FM) and Fourier transform infrared spectroscopy (FTIR), as well as the reaction between WP and asphalt. According to the results of this study, WP can replace SBS as a modifier to prepare WP/SBS composite modified asphalt with good low-temperature resistance, whose high-temperature performance will be lower than that of SBS modified asphalt. After comprehensive consideration, 4% SBS content and 15% WPU content (4 S/15 W) are determined as the suitable types of WPU/SBS composite modified asphalt.


Sign in / Sign up

Export Citation Format

Share Document