Flame retardant transparent films of thermostable biopolyimide metal hybrids

Author(s):  
Jakkapon Phanthuwongpakdee ◽  
Toyohiro Harimoto ◽  
Sandhya Babel ◽  
Sumant Dwivedi ◽  
Kenji Takada ◽  
...  
Author(s):  
Ginam Kim ◽  
W. Marsillo ◽  
M. Libera

The fact that block copolymers can assume a range of morphologies depending upon such variables as relative block length and molecular weight is now well known. In the case of poly(styrene)[PS]-poly(butadiene)[PB]-poly(styrene) (SBS) triblock copolymer, the morphologies range from spheres (roughly ~20% minor component), to cylinders (roughly 20%~35% minor component), to lamellae (roughly equal component fractions) Most recently, there has been increasing interest in transformations between morphologies by thermal annealing. This paper describes initial results studying the effect of solvent evaporation rate and post-casting annealing treatment on the morphology of SBS thin films.TEM specimens were prepared by solution casting electron transparent films. 50 μl of 0.1 wt% SBS (30% styrene, Mw=14,000, Scientific Polymer Products, Inc.) dissolved in toluene was deposited on a polished NaCl single crystal substrate placed in a small dish. After solvent evaporation the film was cut into small squares, floated from the salt in water, and each square was collected on a Cu grid.


2019 ◽  
Vol 9 (2) ◽  
pp. 182-191
Author(s):  
Akihiro Minami ◽  
Hirokazu Tamura ◽  
Hidetoshi Sakamoto ◽  
Yoshifumi Ohbuchi ◽  
Yasuo Marumo

Author(s):  
Amanda Silva ◽  
Enio Henrique Pires da Silva ◽  
Danilo Janes ◽  
Romeu Rony Cavalcante da Costa ◽  
Giovanna Gabriela Crem Silva

2012 ◽  
Vol 29 (9) ◽  
pp. 1090
Author(s):  
Donghai YUAN ◽  
Anbin TANG ◽  
Jie HUANG ◽  
Hanbing MA

2020 ◽  
Vol 17 (10) ◽  
pp. 760-771
Author(s):  
Qirui Gong ◽  
Niangui Wang ◽  
Kaibo Zhang ◽  
Shizhao Huang ◽  
Yuhan Wang

A phosphaphenanthrene groups containing soybean oil based polyol (DSBP) was synthesized by epoxidized soybean oil (ESO) and 9,10-dihydro-oxa-10-phosphaphenanthrene-10-oxide (DOPO). Soybean oil based polyol (HSBP) was synthesized by ESO and H2O. The chemical structure of DSBP and HSBP were characterized with FT-IR and 1H NMR. The corresponding rigid polyurethane foams (RPUFs) were prepared by mixing DSBP with HSBP. The results revealed apparent density and compression strength of RPUFs decreased with increasing the DSBP content. The cell structure of RPUFs was examined by scanning electron microscope (SEM) which displayed the cells as spherical or polyhedral. The thermal degradation and flame retardancy of RPUFs were investigated by thermogravimetric analysis, limiting oxygen index (LOI), and UL 94 vertical burning test. The degradation activation energy (Ea) of first degradation stage reduced from 80.05 kJ/mol to 37.84 kJ/mol with 80 wt% DSBP. The RUPF with 80 wt% DSBP achieved UL94 V-0 rating and LOI 28.3. The results showed that the flame retardant effect was mainly in both gas phase and condensed phase.


Sign in / Sign up

Export Citation Format

Share Document