Full-composition-range glass transition behavior of the polymer/solvent system poly (lactic acid) / ethyl butylacetylaminopropionate (PLA/IR3535®)

Polymer ◽  
2020 ◽  
Vol 209 ◽  
pp. 123058
Author(s):  
Fanfan Du ◽  
Christoph Schick ◽  
René Androsch
2008 ◽  
Vol 273 (1) ◽  
pp. 146-152 ◽  
Author(s):  
Ashok Narladkar ◽  
Eric Balnois ◽  
Guillaume Vignaud ◽  
Yves Grohens

2021 ◽  
Author(s):  
Shuto Mikajiri ◽  
Tomochika Sogabe ◽  
Ruodan Cao ◽  
Takahiro Kikawada ◽  
Toru Suzuki ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Afra Hadjizadeh ◽  
Houman Savoji ◽  
Abdellah Ajji

Despite many of the studies being conducted, the electrospinning of poly (lactic acid) (PLA), dissolved in its common solvents, is difficult to be continuously processed for mass production. This is due to the polymer solution droplet drying. Besides, the poor stretching capability of the polymer solution limits the production of small diameter fibers. To address these issues, we have examined the two following objectives: first, using an appropriate solvent system for the mass production of fibrous mats with fine-tunable fiber diameters; second, nontoxicity of the mats towards Neural Stem Cell (NSC). To this aim, TFA (trifluoroacetic acid) was used as a cosolvent, in a mixture with DCM (dichloromethane), and the solution viscosity, surface tension, electrical conductivity, and the continuity of the electrospinning process were compared with the solutions prepared with common single solvents. The binary solvent facilitated PLA electrospinning, resulting in a long lasting, stable electrospinning condition, due to the low surface tension and high conductivity of the binary-solvent system. The fiber diameter was tailored from nano to micro by varying effective parameters and examined by scanning electron microscopy (SEM) and image-processing software. Laminin-coated electrospun mats supported NSC expansion and spreading, as examined using AlamarBlue assay and fluorescent microscopy, respectively.


e-Polymers ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 39-54 ◽  
Author(s):  
Bo Wang ◽  
Yujuan Jin ◽  
Kai’er Kang ◽  
Nan Yang ◽  
Yunxuan Weng ◽  
...  

AbstractIn this study, a type of epoxy-terminated branched polymer (ETBP) was used as an interface compati- bilizer to modify the poly lactic acid (PLA)/poly(butylene adipate-co-butylene terephthalate) (PBAT) (70/30) blends. Upon addition of ETBP, the difference in glass transition temperature between PLA and PBAT became smaller. By adding 3.0 phr of ETBP, the elongation at break of the PLA/PBAT blends was found increased from 45.8% to 272.0%; the impact strength increased from 26.2 kJ·m−2 to 45.3 kJ·m−2. In SEM analysis, it was observed that the size of the dispersed PBAT particle decreased with the increasing of ETBP content. These results indicated that the compatibility between PLA and PBAT can be effectively enhanced by using ETBP as the modifier. The modification mechanism was discussed in detail. It proposes that both physical and chemical micro-crosslinking were formed, the latter of which was confirmed by gel content analysis.


2008 ◽  
Vol 16 (9) ◽  
pp. 597-604 ◽  
Author(s):  
Wang Ning ◽  
Zhang Xingxiang ◽  
Yu Jiugao ◽  
Fang Jianming

Poly(lactic acid) (PLA) is a biodegradable thermoplastic that can be produced from renewable resources, and so was considered as a major alternative to petroleum-based plastics for packaging applications. However, plasticisation of PLA was required in order to obtain films with sufficient flexibility. Poly(1, 3-butylene adipate) (PBA) was used as a novel plasticiser for PLA, and acetyltributyl citrate (ATBC) was used as the control. FTIR revealed that interaction took place between PLA and plasticiser. With an increasing plasticiser content, storage modulus and glass transition temperature decreased, but elongation at break increased. The elongation at break of PBA-plasticised PLA (PBA content 30 wt.%) could be above 600%, higher than that of ATBC-plasticised PLA (ATBC content 30 wt.%). Moreover, PBA was able to restrain thermally induced migration of plasticiser in plasticised PLA. It was also found that the migration rate of ATBC was directly proportional to the ATBC content in the blends. The rheology showed that the plasticiser could obviously decrease the shear viscosity and improve the fluidity of the blends. PBA was therefore recognised as a novel plasticiser for enhancing the properties of PLA. In particular, as a biodegradable polymer, PBA, when used as a plasticiser in PLA, can enhance migration resistance for its proper molecular weight. Moreover, the area of application of plasticised PLA is broadened.


Technologies ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 71
Author(s):  
Guido Ehrmann ◽  
Bennet Brockhagen ◽  
Andrea Ehrmann

Poly(lactic acid) (PLA) belongs to the 3D printable materials which show shape-memory properties, i.e., which can recover their original shape after a deformation if they are heated above the glass transition temperature. This makes PLA quite an interesting material for diverse applications, such as bumpers, safety equipment for sports, etc. After investigating the influence of the infill design and degree, as well as the pressure orientation on the recovery properties of 3D printed PLA cubes in previous studies, here we report on differences between different PLA materials as well as on the impact of post-treatments after 3D printing by solvents or by heat. Our results show not only large differences between materials from different producers, but also a material-dependent impact of the post treatments. Generally, it is possible to tailor the mechanical and recovery properties of 3D printed PLA parts by choosing the proper material in combination with a chemical or temperature post-treatment.


Sign in / Sign up

Export Citation Format

Share Document