scholarly journals Investigation on compatibility of PLA/PBAT blends modified by epoxy-terminated branched polymers through chemical micro-crosslinking

e-Polymers ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 39-54 ◽  
Author(s):  
Bo Wang ◽  
Yujuan Jin ◽  
Kai’er Kang ◽  
Nan Yang ◽  
Yunxuan Weng ◽  
...  

AbstractIn this study, a type of epoxy-terminated branched polymer (ETBP) was used as an interface compati- bilizer to modify the poly lactic acid (PLA)/poly(butylene adipate-co-butylene terephthalate) (PBAT) (70/30) blends. Upon addition of ETBP, the difference in glass transition temperature between PLA and PBAT became smaller. By adding 3.0 phr of ETBP, the elongation at break of the PLA/PBAT blends was found increased from 45.8% to 272.0%; the impact strength increased from 26.2 kJ·m−2 to 45.3 kJ·m−2. In SEM analysis, it was observed that the size of the dispersed PBAT particle decreased with the increasing of ETBP content. These results indicated that the compatibility between PLA and PBAT can be effectively enhanced by using ETBP as the modifier. The modification mechanism was discussed in detail. It proposes that both physical and chemical micro-crosslinking were formed, the latter of which was confirmed by gel content analysis.

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Wei Kit Chee ◽  
Nor Azowa Ibrahim ◽  
Norhazlin Zainuddin ◽  
Mohd Faizal Abd Rahman ◽  
Buong Woei Chieng

Poly(lactic acid) (PLA)/poly(ε-caprolactone) (PCL) blends were prepared via melt blending technique. Glycidyl methacrylate (GMA) was added as reactive compatibilizer to improve the interfacial adhesion between immiscible phases of PLA and PCL matrices. Tensile test revealed that optimum in elongation at break of approximately 327% achieved when GMA loading was up to 3wt%. Slight drop in tensile strength and tensile modulus at optimum ratio suggested that the blends were tuned to be deformable. Flexural studies showed slight drop in flexural strength and modulus when GMA wt% increases as a result of improved flexibility by finer dispersion of PCL in PLA matrix. Besides, incorporation of GMA in the blends remarkably improved the impact strength. Highest impact strength was achieved (160% compared to pure PLA/PCL blend) when GMA loading was up to 3 wt%. SEM analysis revealed improved interfacial adhesion between PLA/PCL blends in the presence of GMA. Finer dispersion and smooth surface of the specimens were noted as GMA loading increases, indicating that addition of GMA eventually improved the interfacial compatibility of the nonmiscible blend.


2008 ◽  
Vol 16 (9) ◽  
pp. 597-604 ◽  
Author(s):  
Wang Ning ◽  
Zhang Xingxiang ◽  
Yu Jiugao ◽  
Fang Jianming

Poly(lactic acid) (PLA) is a biodegradable thermoplastic that can be produced from renewable resources, and so was considered as a major alternative to petroleum-based plastics for packaging applications. However, plasticisation of PLA was required in order to obtain films with sufficient flexibility. Poly(1, 3-butylene adipate) (PBA) was used as a novel plasticiser for PLA, and acetyltributyl citrate (ATBC) was used as the control. FTIR revealed that interaction took place between PLA and plasticiser. With an increasing plasticiser content, storage modulus and glass transition temperature decreased, but elongation at break increased. The elongation at break of PBA-plasticised PLA (PBA content 30 wt.%) could be above 600%, higher than that of ATBC-plasticised PLA (ATBC content 30 wt.%). Moreover, PBA was able to restrain thermally induced migration of plasticiser in plasticised PLA. It was also found that the migration rate of ATBC was directly proportional to the ATBC content in the blends. The rheology showed that the plasticiser could obviously decrease the shear viscosity and improve the fluidity of the blends. PBA was therefore recognised as a novel plasticiser for enhancing the properties of PLA. In particular, as a biodegradable polymer, PBA, when used as a plasticiser in PLA, can enhance migration resistance for its proper molecular weight. Moreover, the area of application of plasticised PLA is broadened.


RSC Advances ◽  
2017 ◽  
Vol 7 (73) ◽  
pp. 46183-46194 ◽  
Author(s):  
Jia Yang ◽  
Hongwei Pan ◽  
Xin Li ◽  
Shulin Sun ◽  
Huiliang Zhang ◽  
...  

PPCU was prepared by using PPC and polyols as the raw materials and diphenyl-methane-diisocyanate (MDI) as the extender chain. The impact strength and elongation at break of PLA were remarkably enhanced by blending with PPCU.


Technologies ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 71
Author(s):  
Guido Ehrmann ◽  
Bennet Brockhagen ◽  
Andrea Ehrmann

Poly(lactic acid) (PLA) belongs to the 3D printable materials which show shape-memory properties, i.e., which can recover their original shape after a deformation if they are heated above the glass transition temperature. This makes PLA quite an interesting material for diverse applications, such as bumpers, safety equipment for sports, etc. After investigating the influence of the infill design and degree, as well as the pressure orientation on the recovery properties of 3D printed PLA cubes in previous studies, here we report on differences between different PLA materials as well as on the impact of post-treatments after 3D printing by solvents or by heat. Our results show not only large differences between materials from different producers, but also a material-dependent impact of the post treatments. Generally, it is possible to tailor the mechanical and recovery properties of 3D printed PLA parts by choosing the proper material in combination with a chemical or temperature post-treatment.


2012 ◽  
Vol 506 ◽  
pp. 126-129
Author(s):  
P. Pukpanta ◽  
K. Sirisinha

Environmental responsibility is increasing in importance to both consumers and industries. Biopolymer like poly (lactic acid); PLA is an interesting polymer to replace existing petroleum-based material. PLA is very rigid but inherently brittle and easily thermal degraded during processing. To improve the toughness of PLA, poly (butylene adipate-co-terephthalate); PBAT is widely used. This study focuses on the properties of PLA/PBAT blends. The effects of blend composition on the morphology and properties of PLA/PBAT blends were investigated. Also, the use of Irganox antioxidant in improving blend properties is reported. The results showed that the morphology and properties of the blends depend strongly on blend composition. SEM analysis revealed a co-continuous structure in the blend with 50% PLA. The co-continuous structure remained after the addition of Irganox antioxidant. The addition of antioxidant led to a significant improvement in tensile and thermal properties of the blend. The elongation at break and decomposition temperature of the 50/50 blend increased markedly after 0.3% Irganox antioxidant was added.


2011 ◽  
Vol 236-238 ◽  
pp. 207-215
Author(s):  
Xiao Gang Liu ◽  
Li Wang ◽  
Chen Yu Fan ◽  
Shi Zhong Li

Compositing with starch is an effective way to lower the cost of the poly (lactic acid)(PLA)-based biodegradable materials, while the compatibility of these two phases needs to be enhanced. Here reports an improvement based on vacuum heating treatment(VHT), hence a solid-phase esterification between PLA and crosslinked starch(CST) is enhanced. This research also studied the impact by esterified catalysts and starch proportion on thermal stability, surface morphology and mechanical properties of the composite. The result indicated that VHT shows positive effect on all aspects. Especially, sample with 20% CST shows optimized tensile strength of 62.6 MPa, and elongation at break was as high as 69.8%.


2011 ◽  
Vol 31 (6-7) ◽  
Author(s):  
Fang-Cheng Pai ◽  
Hou-Hsein Chu ◽  
Sun-Mou Lai

Abstract A melt blending process was used to prepare poly(lactic acid) (PLA)/metallocene catalyzed polyethylene octene copolymer (POE) blends in order to toughen PLA. A commercialized ethylene-glycidyl methacrylate copolymer (EGMA) was applied as a compatibilizer to improve the dispersion and interaction of dispersed POE to the PLA matrix. The results showed that chemical interaction seems to be the driving force for reinforcing the compatibility between PLA and POE, and also the dispersion of POE into the PLA matrix domain. With the incorporation of 10 phr EGMA in the blends, POE was well-dispersed at a sub-micrometer scale within the PLA matrix, indicating better interfacial compatibility between PLA and POE. The impact strength test revealed that POE could significantly toughen PLA containing EGMA in the blends, up to no-break level regarding unnotched Izod impact strength at 10 phr EGMA content. With the increase of EGMA content, the blends showed lower tensile strength, but higher elongation at break due to the elastomeric characteristics of EGMA. When 10 phr of the EGMA was incorporated into the blends, its elongation at break reached 54.5%, 10.7 times that of neat PLA at 5.1%. The melt viscosity of compatibilized blends containing 10 phr EGMA increased by more than 50% in comparison with the non-compatibilized blend, which implied a good interfacial interaction between the PLA and POE interface.


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2489
Author(s):  
Serena Coiai ◽  
Maria Laura Di Lorenzo ◽  
Patrizia Cinelli ◽  
Maria Cristina Righetti ◽  
Elisa Passaglia

Poly(lactic acid) (PLA) is the most widely produced biobased, biodegradable and biocompatible polyester. Despite many of its properties are similar to those of common petroleum-based polymers, some drawbacks limit its utilization, especially high brittleness and low toughness. To overcome these problems and improve the ductility and the impact resistance, PLA is often blended with other biobased and biodegradable polymers. For this purpose, poly(butylene adipate-co-butylene terephthalate) (PBAT) and poly(butylene succinate-co-butylene adipate) (PBSA) are very advantageous copolymers, because their toughness and elongation at break are complementary to those of PLA. Similar to PLA, both these copolymers are biodegradable and can be produced from annual renewable resources. This literature review aims to collect results on the mechanical, thermal and morphological properties of PLA/PBAT and PLA/PBSA blends, as binary blends with and without addition of coupling agents. The effect of different compatibilizers on the PLA/PBAT and PLA/PBSA blends properties is here elucidated, to highlight how the PLA toughness and ductility can be improved and tuned by using appropriate additives. In addition, the incorporation of solid nanoparticles to the PLA/PBAT and PLA/PBSA blends is discussed in detail, to demonstrate how the nanofillers can act as morphology stabilizers, and so improve the properties of these PLA-based formulations, especially mechanical performance, thermal stability and gas/vapor barrier properties. Key points about the biodegradation of the blends and the nanocomposites are presented, together with current applications of these novel green materials.


2021 ◽  
Author(s):  
Xiaolong Han ◽  
Yu juan Jin ◽  
Bohua Wang ◽  
Huafeng Tian ◽  
Yunxuan Weng

Abstract Polypropylene carbonate (PPC)/polybutylene succinate (PBS) blends were prepared by melt-blending with terminal epoxy-based hyperbranched polymers (EHBP) as modifier. The thermal properties, mechanical properties, rheological properties and fracture morphology were characterized by dynamic thermomechanical analyzer (DMA), thermogravimetric analyzer (TGA), electronic universal testing machine, rotating rheometer and scanning electron microscope (SEM), etc. Upon addition of EHBP, the difference between the glass transition temperature of PPC and PBS became smaller, indicating the compatibility of PPC and PBS were improved by EHBP. Furthermore, by adding 0.5phr of EHBP, the impact strength increased from 9.55 kJ/m− 2 to 17.31 kJ/m− 2, the elongation at break increased from 136.29–204.39%, and the tensile strength increased from 10.00 MPa to 16.84 MPa. The fracture surface of the PPC/PBS blends became rough with the increase of EHBP, even with large filamentous structures and tiny holes, which further demonstrated that EHBP acted as an excellent toughening effect on PPC/PBS. Gel content analysis confirmed that both physical and chemical micro-crosslinking were formed after incorporation of EHBP.


Polimery ◽  
2021 ◽  
Vol 66 (9) ◽  
pp. 459-465
Author(s):  
Intan Najwa Humaira Mohamed Haneef ◽  
Yose Fachmi Buys ◽  
Norhashimah Mohd Shaffiar ◽  
Sharifah Imihezri Syed Shaharuddin ◽  
Abdul Malek Abdul Hamid ◽  
...  

In this work, the influence of halloysite nanotubes (HNTs) on the mechanical and thermal properties of the poly(lactic acid)/polypropylene carbonate (PLA/PPC 70/30) blend was studied. The HNT was incorporated into the PLA/PPC blend by melt mixing. It was found that addition of 2-6 wt % HNT successfully improved the tensile and flexural strength as well as the flexural and Young’s  moduli of PLA/PPC blend, due to the reinforcing effect. Although the elongation at break decreases with increasing HNT content, its value is much higher than that of pure PLA. Moreover, the addition of HNT didnot affect the miscibility of PLA and PPC, since two glass transition temperatures were observed in the DSC thermograms. However, a higher content of HNT may improve the compatibility between PLA and PPC as evidenced by the lower difference between the glass transition temperature of PPC and PLA and reduced crystallinity resulting in higher tensile strength of nanocomposites.Keywords: PLA, PPC, HNT, mechanical properties, thermal properties.


Sign in / Sign up

Export Citation Format

Share Document