scholarly journals Fully biodegradable blends of poly(butylene succinate) and poly(butylene carbonate): Miscibility, thermal properties, crystallization behavior and mechanical properties

2012 ◽  
Vol 31 (1) ◽  
pp. 39-45 ◽  
Author(s):  
Jin Wang ◽  
Liuchun Zheng ◽  
Chuncheng Li ◽  
Wenxiang Zhu ◽  
Dong Zhang ◽  
...  
Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1893 ◽  
Author(s):  
Přemysl Menčík ◽  
Radek Přikryl ◽  
Ivana Stehnová ◽  
Veronika Melčová ◽  
Soňa Kontárová ◽  
...  

This paper explores the influence of selected commercial plasticizers structure, which are based on esters of citric acid, on mechanical and thermal properties of Poly(3-hydroxybutyrate)/Poly(lactic acid)/Plasticizer biodegradable blends. These plasticizers were first tested with respect to their miscibility with Poly(3-hydroxybutyrate)/Poly(lactic acid) (PHB/PLA) blends using a kneading machine. PHB/PLA/plasticizer blends in the weight ratio (wt %) of 60/25/15 were then prepared by single screw and corotating meshing twin screw extruders in the form of filament for further three-dimensional (3D) printing. Mechanical, thermal properties, and shape stability (warping effect) of 3D printed products can be improved just by the addition of appropriate plasticizer to polymeric blend. The goal was to create new types of eco-friendly PHB/PLA/plasticizers blends and to highly improve the poor mechanical properties of neat PHB/PLA blends (with majority of PHB) by adding appropriate plasticizer. Mechanical properties of plasticized blends were then determined by the tensile test of 3D printed test samples (dogbones), as well as filaments. Measured elongation at break rapidly enhanced from 21% for neat non-plasticized PHB/PLA blends (reference) to 328% for best plasticized blends in the form of filament, and from 5% (reference) to 187% for plasticized blends in the form of printed dogbones. The plasticizing effect on blends was confirmed by Modulated Differential Scanning Calorimetry. The study of morphology was performed by the Scanning Electron Microscopy. Significant problem of plasticized blends used to be also plasticizer migration, therefore the diffusion of plasticizers from the blends after 15 days of exposition to 110 °C in the drying oven was investigated as their measured weight loss. Almost all of the used plasticizers showed meaningful positive softening effects, but the diffusion of plasticizers at 110 °C exposition was quite extensive. The determination of the degree of disintegration of selected plasticized blend when exposed to a laboratory-scale composting environment was executed to roughly check the “biodegradability”.


2017 ◽  
Vol 88 (14) ◽  
pp. 1616-1627 ◽  
Author(s):  
Shu-qiang Liu ◽  
Gai-hong Wu ◽  
Yun-chao Xiao ◽  
Hong-xia Guo ◽  
Fen-juan Shao

Poly(lactic acid) (PLA) fiber, owing to its biocompatibility and biodegradability, could be widely used in many related industrial areas. However, high brittleness has been the main obstacle to expanding its applications. So in this paper, carbon nanotube (CNT) nanocapsules were designed to toughen PLA and further reported their effect on the crystallization behavior and mechanical properties of PLA complex fiber. These designed CNT nanocapsules successfully solved the agglomeration of CNTs within the PLA matrix as well as the compatibility issue. In addition, the morphological, mechanical, optical and thermal properties of PLA complex fibers were also studied. The addition of CNT nanocapsules obviously improved the crystallization behavior of PLA fiber. Furthermore, compared with pure PLA, the tensile strength of PLA complex fiber was enhanced by 30.62% and the elongation by 32.2%, so the designed CNT nanocapsules could be used as a toughener for PLA fiber. This research benefits the extension of PLA applications where toughness is an important factor.


2005 ◽  
Vol 13 (5) ◽  
pp. 479-488 ◽  
Author(s):  
Sang Muk Lee ◽  
Seong Ok Han ◽  
Donghwan Cho ◽  
Won Ho Park ◽  
Seung Goo Lee

The influence of chopped fibre length on the mechanical and thermal properties of silk fibre ( Bombix mori) reinforced poly(butylene succinate) (PBS) biocomposites has been investigated in terms of tensile and flexural properties, thermal stability, thermal expansion, and dynamic mechanical properties. The chopped fibre lengths studied were 3.2 mm, 6.4 mm, 12.7 mm, and 25.4 mm. The results demonstrate that chopped silk fibres play an effective role in improving the mechanical properties of PBS in the present system. At a fixed fibre loading of 40 wt%, the tensile strength and modulus of the PBS control were improved by 69% and 228%, respectively, in comparison with those of the biocomposite reinforced with 25.4 mm silk fibres. The flexural strength and modulus of PBS were also greatly improved by 167% and 323%, respectively. The thermal properties of PBS resin increased when incorporating chopped silk fibres in the composite matrix. The biocomposites had much lower linear coefficient of thermal expansion (CTE) values and higher storage moduli than the PBS controls above the glass transition region, especially with reinforcing silk fibres of 25.4 mm long.


2013 ◽  
Vol 320 ◽  
pp. 441-445
Author(s):  
Lian Liu ◽  
Teng Yu ◽  
Pei Wang ◽  
Guang Shuo Wang ◽  
Zhi Yong Wei

Recently, Graphene oxide (GO), carbon nanotubes (CNTs) and fullerenes (C60) have attracted enormous interests because of their extraordinary properties, and they can improve various kinds of properties of polymeric materials. The latest achievements on investigating applications and properties including mechanical properties, thermal properties, crystallization behavior and bioactivity of poly (ε-caprolactone). (PCL)/GO, PCL/CNTs and PCL/ C60 nanocomposites obtained in the last five years were summarized in this paper. The relationships between the properties of nanocomposites and the loading, dispersion chemical modification of GO, CNTs and C60 were also discussed.


Sign in / Sign up

Export Citation Format

Share Document