Mechanical properties of highly aligned short pineapple leaf fiber reinforced – Nitrile rubber composite: Effect of fiber content and Bonding Agent

2014 ◽  
Vol 35 ◽  
pp. 20-27 ◽  
Author(s):  
Ukrit Wisittanawat ◽  
Sombat Thanawan ◽  
Taweechai Amornsakchai
2017 ◽  
Vol 57 ◽  
pp. 94-100 ◽  
Author(s):  
Nuttapong Hariwongsanupab ◽  
Sombat Thanawan ◽  
Taweechai Amornsakchai ◽  
Marie-France Vallat ◽  
Karine Mougin

Materials ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 3498 ◽  
Author(s):  
Kaiyue Zhao ◽  
Shanbin Xue ◽  
Peng Zhang ◽  
Yupeng Tian ◽  
Peibing Li

Recently, there is ongoing interest in the use of natural plant fibers as alternatives for conventional reinforcements in cementitious composites. The use of natural plant fibers makes engineering work more sustainable, since they are renewable, biodegradable, energy-efficient, and non-toxic raw materials. In this contribution, a comprehensive experimental program was undertaken to determine the influence of pineapple leaf fiber and ramie fiber on the mechanical properties and mass transport of cement-based composites. The compressive strength, tensile strength, modulus of elasticity, modulus of rupture, fracture energy, flexural toughness, coefficient of capillary water absorption, and chloride diffusion were measured. Natural plant fiber-reinforced cement-based composites (NPFRCCs) containing pineapple leaf fiber and ramie fiber, as compared to the plain control, exhibited a slight reduction in compressive strength and a considerable improvement in tensile strength, modulus of elasticity, modulus of rupture, and flexural toughness; the enhancement was remarkable with a higher fiber content. The coefficient of capillary absorption and chloride diffusion of NPFRCCs were significantly larger than the plain control, and the difference was evident with the increase in fiber content. The present study suggests that the specimen with 2% pineapple leaf fiber content can be used in normal environments due to its superior mechanical properties. However, one should be careful when using the material in marine environments.


2020 ◽  
Vol 41 (4) ◽  
pp. 1255-1264 ◽  
Author(s):  
Ng Lin Feng ◽  
Sivakumar Dhar Malingam ◽  
Chen Wei Ping ◽  
Nadlene Razali

Author(s):  
Abir Saha ◽  
Santosh Kumar ◽  
Divya Zindani ◽  
Sumit Bhowmik

The present study is focused on investigating the effect of the micro-mechanical properties of the natural fiber- (pineapple leaf fiber) reinforced polymeric composites by the addition of pineapple leaf micro-particulates. For the investigation, a two-step approach has been used. In the first step, finite element method-based analysis has been used to characterize the tensile and shear properties of the pineapple leaf fiber-reinforced polymeric composites (FRP) and pineapple paticulate-reinforced polymeric composites (PRC), and the adopted finite element method-based analysis has been validated through the experimental approach. In the second step, the validated finite element method-based analysis has been used to characterize the micro-mechanical properties of the hybrid fiber-reinforced polymeric composites (HFRP) fabricated using the pineapple leaf micro-particle embedded epoxy as a matrix material and the pineapple leaf fiber has been used as reinforcing material. It has been observed through the analysis that the micro-mechanical properties of HFRP were superior to that of FRP. There has been a 10.16% increment in Young’s modulus in the longitudinal direction and a 26.36% increment in Young’s modulus in the transverse direction for HFRP over FRP. Further, a 9.91% increment for in-plane shear modulus and 26.17% increment in outer-plane shear modulus have been observed for HFRP in comparison to FRP. These results suggest that pineapple leaf particulates are good reinforcing materials to enhance the transverse direction and outer plane micro-mechanical properties of the fiber-reinforced composite.


2019 ◽  
Vol 1155 ◽  
pp. 29-40
Author(s):  
Kamrun N. Keya ◽  
Nasrin A. Kona ◽  
Ruhul A. Khan

In this experimental studies, three types of fabric such as Jute, Okra and Pineapple Leaf Fiber (PALF) were selected and matrix material such as polypropylene (PP) was selected to manufacture composites. Jute/PP, Okra/PP, and PALF/PP based composites were prepared successfully by a conventional compression molding technique. The objective of this study is to compare the mechanical such as tensile strength (TS), tensile modulus (TM), bending strength (BS), bending modulus (BM), elongation at break (Eb%) and interfacial properties of the composites. Jute fiber (hessian cloth)-reinforced polypropylene matrix composites (45wt% fiber) were fabricated by compression molding. TS, TM, BS, BM, and IS of the composites were found to be 45 MPa, 2.2 GPa, 54 MPa, 4.1 GPa, and 16 kJ/m2, respectively. Then Okra and PALF fiber reinforced polypropylene-based composites (45 wt% fiber) were fabricated and the mechanical properties were compared with those of the jute-based composites. The result revealed that mechanical properties of PALF composite higher than jute and Okra fiber reinforced composites. Water absorption and elongation percentage at break showed different scenario and it was noticed from the experimental study that water absorption and elongation at break (%) of jute fabric was higher than other composites. Fracture sides of the composites were studied by scanning electron microscope (SEM), and the results revealed poor fiber-matrix adhesion for jute fiber-based composites compared to that of the other fiber-based composites (OF/PP and PALF/PP). KEY WORDS: Polypropylene, Jute Fiber, Okra Fiber, Pineapple Fiber, Mechanical Properties, Interfacial Properties, Composites. *Corresponding Address: [email protected]


2019 ◽  
Author(s):  
M. Indra Reddy ◽  
Ranjeet Kumar Sahu ◽  
M. Anil Kumar ◽  
Ch. Rama Bhadri Raju

Sign in / Sign up

Export Citation Format

Share Document