Tensile mechanical properties of basalt fiber reinforced polymer composite under varying strain rates and temperatures

2016 ◽  
Vol 51 ◽  
pp. 29-39 ◽  
Author(s):  
Huaian Zhang ◽  
Yiming Yao ◽  
Deju Zhu ◽  
Barzin Mobasher ◽  
Liang Huang

Basalt fibre reinforced polymer composite is a newly versatile material that has good potential to be used in many applications due to its high specific modulus and strength properties. This paper is aimed to evaluate the response and properties of BFRP composite when it is subjected to low-velocity impact loading. The BFRP laminates were fabricated using vacuum bagging method. The effects of 5, 10 and 15wt% nanosilica particles on density, impact load and energy absorbed were investigated using a drop weight impact test. The damage characteristics of the samples were examined using an optical microscope. The addition of 15wt% nanosilica into Basalt fiber reinforced polymer composite significantly improved the energy absorption properties of the specimens. This suggests that the nanomodified BFRP composite has better damage resistance properties when compared to the pure system.



2019 ◽  
Vol 265 ◽  
pp. 05011
Author(s):  
Marta Kosior-Kazberuk

The fiber reinforced polymer (FRP) bars have become a useful substitute for conventional reinforcement in civil engineering structures for which load capacity and resistance to environmental influences are required. They are often used in concrete structural elements exposed to strong environmental aggression, such as foundations, breakwaters and other seaside structures, road structures and tanks. The basalt fiber-reinforced polymer (BFRP) is the most recently FRP composite, appearing within the last decade. Due to their mechanical properties different from steel bars, such as higher tensile strength and lower Young's modulus, BFRP bars are predestined for use in structures for which the ultimate limit state is rather decisive than serviceability limit state. Experimental tests were carried out to assess the influence of static long-term loads and cyclic freezing/thawing on the behaviour of concrete model beams with non-metallic reinforcement. The bars made of basalt fiber reinforced polymer (BFRP) and hybrid (basalt and carbon) fiber reinforced polymer (HFRP) were used as non-metallic reinforcement. The mechanical properties of both types of bars were also determined.



2014 ◽  
Vol 505-506 ◽  
pp. 184-187
Author(s):  
Qi Yang Liu ◽  
Ming He

Continuously reinforced concrete pavement (CRCP) does not require any contraction joints which is a high-performance pavement structure type that just need a sufficient number of reinforced pavement longitudinal configuration to constrain sideway random crack width. With continuous basalt fiber as reinforced material and synthetic resin as the matrix material and adding appropriate adjuvants, basalt fiber reinforced polymer (BFRP) bar form a new type of material after pultrusion processing and surface treatment technologies. BFRP on the mechanical properties were studied by two kinds of test methods which are using extensometer strain detection and fiber optic strain sensing and the parameter of homegrown BFRP bars mechanical properties. Because of the lower tensile elastic modulus of BFRP bars compared with rebar, the mechanical properties of basalt fiber-steel wire composite bar has been studied along with the research corrosion and flexural properties of BFRP bar.



2017 ◽  
Vol 7 (4) ◽  
pp. 33
Author(s):  
SURESH R ◽  
SIVARAMAKRISHNAIAH M ◽  
SANKAR REDDY B ◽  
◽  
◽  
...  




2018 ◽  
Vol 765 ◽  
pp. 355-360 ◽  
Author(s):  
Sakol Suon ◽  
Shahzad Saleem ◽  
Amorn Pimanmas

This paper presents an experimental study on the compressive behavior of circular concrete columns confined by a new class of composite materials originated from basalt rock, Basalt Fiber Reinforced Polymer (BFRP). The primary objective of this study is to observe the compressive behavior of BFRP-confined cylindrical concrete column specimens under the effect of different number of layers of basalt fiber as a study parameter (3, 6, and 9 layers). For this purpose, 8 small scale circular concrete specimens with no internal steel reinforcement were tested under monotonic axial compression to failure. The results of BFRP-confined concrete specimens of this study showed a bilinear stress-strain response with two ascending branches. Consequently, the performance of confined columns was improved as the number of BFRP layer was increased, in which all the specimens exhibited ductile behavior before failure with significant strength enhancement. The experimental results indicate the well-performing of basalt fiber in improving the concrete compression behavior with an increase in number of FRP layers.



Sign in / Sign up

Export Citation Format

Share Document