Investigation on the machine calibration effect on the optimization through design of experiments (DOE) in injection molding parts

2020 ◽  
Vol 90 ◽  
pp. 106703
Author(s):  
Chao-Tsai Huang ◽  
Rui-Ting Xu ◽  
Po-Hsuan Chen ◽  
Wen-Ren Jong ◽  
Shia-Chung Chen
2013 ◽  
Vol 37 (3) ◽  
pp. 313-323 ◽  
Author(s):  
Kingsun Lee ◽  
Jui-Chang Lin

The unibody of LED (light-emitting diodes) lampshades is fabricated by injection mold; the forming technique is complicated, especially for multi-cavity molds. This study applies a finite element analysis to explore the influences of the shrinkage of LED lampshades. The effect of selected injection parameters and their levels on shrinkage size, and the subsequent design of experiments were accomplished using the Taguchi method. The results were confirmed by experiments, which indicated that the selected injection parameters effectively reduce the shrinkage. The error between optimal estimated value and verified value is within 3.82%.


2014 ◽  
Vol 541-542 ◽  
pp. 359-362 ◽  
Author(s):  
Gyung Ju Kang

This Paper Presents the Optimization of Injection Molding Conditions to Minimize the Warpage and Volumetric Shrinkage Using Design of Experiments and Taguchi Optimization Method. Considering the Process Parameters such as Injection Time, Packing Pressure, Packing Pressure Time, and Cooling Time, a Series of Mold Analysis are Performed. Orthogonal Arrays of Taguchi, the Signal-to-Noise(S/N) and Analysis of Variance (ANOVA) are Utilized to Determine the Optimization Parameter Levels and to Find out Principal Processing Parameters on Warpage and Volumetric Shrinkage. from the Results it is Clear that Warpage and Volumetric Shrinkage are Reduced. also, the Dominant Parameters were Cooling Time and Packing Time for Warpage, on the other Hand, the most Important Factor for Shrinkage was Injection Time. from this, it can be Concluded that Taguchi Method is very Suitable to Solve the Warpage and Volumetric Shrinkage Problems in Injection Molding Parts.


2000 ◽  
Author(s):  
K. Park ◽  
J. H. Ahn ◽  
S. R. Choi

Abstract The present work concerns optimal design for the injection molding process of a deflection yoke (coil separator). The optimal design for the injection molding process is developed using design of experiments and finite element analysis. Two design of experiments approaches are applied such as: the design of experiment for mold design and the design of experiments for determination of process parameters. Finite element analyses have been carried out as a design of experiments for mold design: runner system and cooling channel. In order to determine optimal process parameters, experiments have been performed for various process conditions with the design of experiments scheduling.


2011 ◽  
Vol 31 (5) ◽  
Author(s):  
María G. Villarreal-Marroquín ◽  
Mauricio Cabrera-Ríos ◽  
José M. Castro

Abstract Injection molding is the most important process for mass-producing plastic products. To help improve and facilitate the molding of plastic parts, advanced computer simulation tools have been developed. While modeling is complicated by itself, the difficulty of optimizing the injection molding process is that the performance measures involving the injection molding process usually show conflicting behaviors. Therefore, the best solution for one performance measure is usually not the best in some other performance measures. This paper introduces a simulation optimization method which considers multiple performance measures and is able to find a set of efficient solutions without having to evaluate a large number of simulations. The main components of the method are metamodeling, design of experiments, and data envelopment analysis. The method is illustrated and detailed here using a simple test example, and it is applied to a real injection molding case. The performance of the method using a different design of experiments is also discussed.


Sign in / Sign up

Export Citation Format

Share Document